Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
61.703 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • DCCG - Grup de recerca en geometria computacional, combinatoria i discreta
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • DCCG - Grup de recerca en geometria computacional, combinatoria i discreta
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A polynomial bound for untangling geometric planar graphs

Thumbnail
View/Open
apolynomialbound.pdf (215,0Kb)
 
10.1007/s00454-008-9125-3
 
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2117/9583

Show full item record
Bose, Prosenjit
Dujmovic, Vida
Hurtado Díaz, Fernando AlfredoMés informacióMés informació
Langerman, Stefan
Morin, Pat
Wood, David
Document typeArticle
Defense date2009-12
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
To untangle a geometric graph means to move some of the vertices so that the resulting geometric graph has no crossings. Pach and Tardos (Discrete Comput. Geom. 28(4): 585–592, 2002) asked if every n-vertex geometric planar graph can be untangled while keeping at least $n^\in{}$ vertices fixed. We answer this question in the affirmative with ∊ = 1/4. The previous best known bound was Ω$(\sqrt{log\,n/log\,log\,n})$. We also consider untangling geometric trees. It is known that every n-vertex geometric tree can be untangled while keeping at least $(\sqrt{n/3})$ vertices fixed, while the best upper bound was O$((n\,log\,n)^{2/3})$. We answer a question of Spillner and Wolff (http://arxiv.org/abs/0709.0170) by closing this gap for untangling trees. In particular, we show that for infinitely many values of n, there is an n-vertex geometric tree that cannot be untangled while keeping more than $3(\sqrt{n}-1)$ vertices fixed.
CitationBose, P. [et al.]. A polynomial bound for untangling geometric planar graphs. "Discrete and computational geometry", Desembre 2009, vol. 42, núm. 4, p. 570-585. 
URIhttp://hdl.handle.net/2117/9583
DOI10.1007/s00454-008-9125-3
ISSN0179-5376
Publisher versionhttp://arxiv.org/PS_cache/arxiv/pdf/0710/0710.1641v2.pdf
Collections
  • DCCG - Grup de recerca en geometria computacional, combinatoria i discreta - Articles de revista [85]
  • Departament de Matemàtiques - Articles de revista [3.102]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
apolynomialbound.pdf215,0KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina