Mostra el registre d'ítem simple

dc.contributorAlcubilla González, Ramón
dc.contributorGarin Escriva, Moises
dc.contributor.authorHernández García, David
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
dc.date.accessioned2014-11-26T09:55:05Z
dc.date.available2014-11-26T09:55:05Z
dc.date.issued2014-10-23
dc.identifier.citationHernández García, D. Selective thermal emitters based on photonic crystals. Tesi doctoral, UPC, Departament d'Enginyeria Electrònica, 2014. DOI 10.5821/dissertation-2117-95511.
dc.identifier.urihttp://hdl.handle.net/2117/95511
dc.description.abstractUn dels límits fonamentals que afecta l'eficiència de conversió en cèl·lules fotovoltaiques és la distribució espectral de la radiació solar. D'una banda, només els fotons amb energia superior al gap del semiconductor poden convertir-se en electricitat a la cèl·lula. Els fotons de baixa energia no generen parells electró-forat. D'altra banda, l'excés d'energia dels portadors generats per fotons de molt alta energia es perd ràpidament per termalització en el propi dispositiu. Aquests fotons d'alta energia no generen una major energia elèctrica, pel que l'excés d'energia òptica es perd. Per superar aquesta limitació, la investigació s'ha centrat majoritàriament en millorar la conversió directa de fotons d'alta i baixa energia a través de, per exemple, l'ús d'up- i down-converters. Una alternativa menys estudiada consisteix en adaptar la radiació solar al dispositiu com a pas previ a la conversió. Aquesta adaptació es realitza mitjançant l'ús d'emissors selectius òpticament adaptats al semiconductor. Un emissor selectiu és un material amb una emissió tèrmica que ocupa una banda espectral estreta, en comptes d'emetre en tot l'espectre freqüencial. Aquests emissors són una alternativa eficient per obtenir grans conversions, treballant a temperatures al voltant dels 1500 K, donat que un material calentat pel Sol, o una altra font d'energia, pot reemetre llum amb una distribució espectral molt més adequada al dispositiu fotovoltaic. Aquest mode d'operació es coneix com a conversió d'energia termofotovoltaica. A la natura existeixen materials capaços de comportar-se com emissors selectius. Els òxids de terres rares representen un interesant camp d'investigació. Aquests òxids tenen una emissió tèrmica molt baixa en tot l'espectre excepte a certes freqüències. Aquestes freqüències d'emissió són úniques i selectives i provenen de ressonàncies a l'estructura cristal·lina del material. El desavantatge en la seva utilització radica en què la posició espectral d'aquests pico d'emissió, propis del material i la seva estructura, no pot ser controlada. A més, aquestes bandes d'emissió són relativament estretes, generant una baixa densitat de potència radiada. Per tant, existeix la necessitat de treballar amb materials amb una banda d'emissió selectiva que pugui ser dissenyada i controlada convenientment. La solució és l'ús de cristalls fotònics (materials artificials amb propietats òptiques que no existeixen en la natura). Encara que la seva fabricació presenta molts reptes, aquests cristalls artificials permeten el control de l'emissió espontània, suprimint-la o potenciant-la a la banda freqüencial d'interès. Existeixen varies interaccions que permeten aquest control: l'efecte de banda prohibida, la interacció per plasmons o fonons, o l'efecte de microcavitat. Tots permeten modificar l'espectre d'emissió tèrmica d'un material. La present tesis doctoral està dedicada a l'estudi de les propietats d'emissió tèrmica, i estabilitat tèrmica, d'emissors selectius basats en cristalls fotònics. S'han analitzat varies estructures: cristalls fotònics basats en silici macroporós, quasi-cristalls fotònics i microcavitats metàl·liques. També, en col·laboració amb altres grups d'investigació, s'han analitzat les propietats tèrmiques de cristalls col·loïdals. En el present treball, es mostra que els cristalls i quasi-cristalls basats en silici macroporós poden inhibir eficientment la radiació tèrmica de manera controlable, sent a més estables a alta temperatura fins 1500 K. Respecte els cristalls metàl·lics, l'estudi realitzat mostra la seva alta selectivitat espectral, encara que aquests emissors han de treballar a temperatures inferiors a 1100 K per garantir la seva estabilitat estructural i òptica.
dc.description.abstractOne of the fundamental limits of conversion efficiency in photovoltaic cells is the broadband distribution of solar spectrum. On one hand, only photons with energy higher than the semiconductor's bandgap can be converted in the device, on the other hand, carriers generated by high energy photons rapidly loose their excess of energy by thermalization with the lattice. To overcome this limitation, and span the useful convertible region of solar spectrum, many approaches have focused on improving the direct photon to electron conversion by the development of up- and down-converters. A less studied alternative, however, is the use of spectrally narrow distributed emitters, optically matched with the gap energy of the photovoltaic cell, instead of direct sunlight. Indeed, a material heated by the sun, or another energy source as methane or hydrogen, can re-emit light with suitable spectral distribution and significant higher power density, improving conversion efficiencies in solar cells. This way of operation is known as thermophotovoltaic energy conversion. Several materials have been considered to be used as emitters in thermophotovoltaic systems. Silicon carbide is a common one, thanks to its high stability at temperatures up to >2000 K. However, its broadband spectral emission limits the conversion efficiency in the photovoltaic device and forces to work at elevated temperatures. Selective emitters, which stand for materials whose thermal emission occupies a narrow spectral region, are a promising alternative to reach elevated conversion efficiencies at lower temperatures. Natural selective emitters as rare earths have attracted considerable research interest as they present unique emission peaks with the highest emittance level. This approach, however, presents some drawbacks, the spectral position where strong emission appears is not controllable, and the width of the emission band is relatively narrow, leading to a low power density emitted by the source. An advantageous way to engineer the selective emission of a thermal source and control the spectral position and bandwidth of strong emission, is by making use of photonic crystals (articial materials engineered to show optical properties that may not be found in nature). The spectral control of the spontaneous emission in such materials is a unique feature of photonic crystals, although their fabrication, mainly in three-dimensions, is still challenging. Several interactions between photonic crystals and radiation have been reported: the photonic bandgap effect, surface plasmon polaritons, phonon polaritons, or the microcavity effect, to give some examples. All these approaches allow engineering the thermal emission of materials to match the energy band of the photovoltaic cell and benefit the optical to electrical conversion efficiency, although some limitations arise when utilized in high temperature thermophotovoltaic systems which will be analyzed during the realization of this thesis. This thesis is therefore devoted to the study of the thermal emission properties and thermal stability of photonic crystal based selective emitters. Various structures have been analyzed: macroporous silicon crystals, photonic quasi-crystals and metallic microcavities. A study in self-assembled colloidal crystals was also started and the preliminary results are presented in the appendix of the document. Here, it is demonstrated that macroporous silicon crystals and quasi-crystals can inhibit thermal radiation in a controllable manner with thermal stability up to 1500 K. The great selective emission properties of metallic microcavities is also demonstrated, although the working temperature of such structures is limited below 1100 K to prevent degradation of the metallic layer.
dc.format.extent148 p.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.rightsL'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.sourceTDX (Tesis Doctorals en Xarxa)
dc.subjectÀrees temàtiques de la UPC::Enginyeria electrònica
dc.titleSelective thermal emitters based on photonic crystals
dc.typeDoctoral thesis
dc.subject.lemacCristalls fotònics
dc.subject.lemacRadiació solar
dc.subject.lemacEnergia tèrmica solar
dc.identifier.doi10.5821/dissertation-2117-95511
dc.identifier.dlB 27983-2014
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
dc.identifier.tdxhttp://hdl.handle.net/10803/284201


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple