Show simple item record

dc.contributorRubio Sola, Jose Antonio
dc.contributor.authorGarcía Almudéver, Carmen
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
dc.date.accessioned2014-09-17T13:33:13Z
dc.date.available2014-09-17T13:33:13Z
dc.date.issued2014-07-29
dc.identifier.citationGarcía Almudéver, C. "Variability and reliability analysis of carbon nanotube technology in the presence of manufacturing imperfections". Tesi doctoral, UPC, Departament d'Enginyeria Electrònica, 2014.
dc.identifier.urihttp://hdl.handle.net/2117/95408
dc.description.abstractIn 1925, Lilienfeld patented the basic principle of field effect transistor (FET). Thirty-four years later, Kahng and Atalla invented the MOSFET. Since that time, it has become the most widely used type of transistor in Integrated Circuits (ICs) and then the most important device in the electronics industry. Progress in the field for at least the last 40 years has followed an exponential behavior in accordance with Moore¿s Law. That is, in order to achieve higher densities and performance at lower power consumption, MOS devices have been scaled down. But this aggressive scaling down of the physical dimensions of MOSFETs has required the introduction of a wide variety of innovative factors to ensure that they could still be properly manufactured. Transistors have expe- rienced an amazing journey in the last 10 years starting with strained channel CMOS transistors at 90nm, carrying on the introduction of the high-k/metal-gate silicon CMOS transistors at 45nm until the use of the multiple-gate transistor architectures at 22nm and at recently achieved 14nm technology node. But, what technology will be able to produce sub-10nm transistors? Different novel materials and devices are being investigated. As an extension and enhancement to current MOSFETs some promising devices are n-type III-V and p-type Germanium FETs, Nanowire and Tunnel FETs, Graphene FETs and Carbon Nanotube FETs. Also, non-conventional FETs and other charge-based information carrier devices and alternative information processing devices are being studied. This thesis is focused on carbon nanotube technology as a possible option for sub-10nm transistors. In recent years, carbon nanotubes (CNTs) have been attracting considerable attention in the field of nanotechnology. They are considered to be a promising substitute for silicon channel because of their small size, unusual geometry (1D structure), and extraordinary electronic properties, including excellent carrier mobility and quasi-ballistic transport. In the same way, carbon nanotube field-effect transistors (CNFETs) could be potential substitutes for MOSFETs. Ideal CNFETs (meaning all CNTs in the transistor behave as semiconductors, have the same diameter and doping level, and are aligned and well-positioned) are predicted to be 5x faster than silicon CMOS, while consuming the same power. However, nowadays CNFETs are also affected by manufacturing variability, and several significant challenges must be overcome before these benefits can be achieved. Certain CNFET manufacturing imperfections, such as CNT diameter and doping variations, mispositioned and misaligned CNTs, high metal-CNT contact resistance, the presence of metallic CNTs (m-CNTs), and CNT density variations, can affect CNFET performance and reliability and must be addressed. The main objective of this thesis is to analyze the impact of the current CNFET manufacturing challenges on multi-channel CNFET performance from the point of view of variability and reliability and at different levels, device and circuit level. Assuming that CNFETs are not ideal or non-homogeneous because of today CNFET manufacturing imperfections, we propose a methodology of analysis that based on a CNFET ideal compact model is able to simulate heterogeneous or non-ideal CNFETs; that is, transistors with different number of tubes that have different diameters, are not uniformly spaced, have different source/drain doping levels, and, most importantly, are made up not only of semiconducting CNTs but also metallic ones. This method will allow us to analyze how CNT-specific variations affect CNFET device characteristics and parameters and CNFET digital circuit performance. Furthermore, we also derive a CNFET failure model and propose an alternative technique based on fault-tolerant architectures to deal with the presence of m-CNTs, one of the main causes of failure in CNFET circuits.
dc.format.extent139 p.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.rightsL'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.sourceTDX (Tesis Doctorals en Xarxa)
dc.subjectÀrees temàtiques de la UPC::Enginyeria electrònica
dc.titleVariability and reliability analysis of carbon nanotube technology in the presence of manufacturing imperfections
dc.typeDoctoral thesis
dc.identifier.dlB 23107-2014
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
dc.identifier.tdxhttp://hdl.handle.net/10803/277428


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain