Mostra el registre d'ítem simple

dc.contributorJofre Roca, Lluís
dc.contributor.authorGuardiola Garcia, Marta
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.date.accessioned2014-05-28T11:38:53Z
dc.date.available2014-05-28T11:38:53Z
dc.date.issued2013-10-31
dc.identifier.citationGuardiola Garcia, M. Multi-antenna multi-frequency microwave imaging systems for biomedical applications. Tesi doctoral, UPC, Departament de Teoria del Senyal i Comunicacions, 2013. DOI 10.5821/dissertation-2117-95274.
dc.identifier.urihttp://hdl.handle.net/2117/95274
dc.description.abstractMedical imaging refers to several different technologies that are used to view the human body in order to diagnose, monitor, or treat medical conditions. Each type of technology gives different information about the area of the body being studied depending on the radiation used to illuminate de body. Nowadays there are still several lesions that cannot be detected with the current methods in a curable stage of the disease. Moreover they present some drawbacks that limit its use, such as health risk, high price, patient discomfort, etc. In the last decades, active microwave imaging systems are being considered for the internal inspection of light-opaque materials thanks to its capacity to penetrate and differentiate their constituents based on the contrast in dielectric properties with a sub-centimeter resolution. Moreover, they are safe, relatively low-cost and portable. Driven by the promising precedents of microwaves in other fields, an active electromagnetic research branch was focused to medical microwave imaging. The potential in breast cancer detection, or even in the more challenging brain stroke detection application, were recently identified. Both applications will be treated in this Thesis. Intensive research in tomographic methods is now devoted to develop quantitative iterative algorithms based on optimizing schemes. These algorithms face a number of problems when dealing with experimental data due to noise, multi-path or modeling inaccuracies. Primarily focused in robustness, the tomographic algorithm developed and assessed in this thesis proposes a non-iterative and non-quantitative implementation based on a modified Born method. Taking as a reference the efficient, real-time and robust 2D circular tomographic method developed in our department in the late 80s, this thesis proposes a novel implementation providing an update to the current state-of-the-art. The two main contributions of this work are the 3D formulation and the multi-frequency extension, leading to the so-called Magnitude Combined (MC) Tomographic algorithm. First of all, 2D algorithms were only applicable to the reconstruction of objects that can be assumed uniform in the third dimension, such as forearms. For the rest of the cases, a 3D algorithm was required. Secondly, multi-frequency information tends to stabilize the reconstruction removing the frequency selective artifacts while maintaining the resolution of the higher frequency of the band. This thesis covers the formulation of the MC tomographic algorithm and its assessment with medically relevant scenarios in the framework of breast cancer and brain stroke detection. In the numerical validation, realistic models from magnetic resonances performed to real patients have been used. These models are currently the most realistic ones available to the scientific community. Special attention is devoted to the experimental validation, which constitutes the main challenge of the microwave imaging systems. For this reason, breast phantoms using mixtures of chemicals to mimic the dielectric properties of real tissues have been manufactured and an acquisition system to measure these phantoms has been created. The results show that the proposed algorithm is able to provide robust images of medically realistic scenarios and detect a malignant breast lesion and a brain hemorrhage, both at an initial stage.
dc.format.extent196 p.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.rightsADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.sourceTDX (Tesis Doctorals en Xarxa)
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació
dc.subject.other3D Microwave imaging
dc.subject.otherTomographic imaging
dc.subject.otherBreast cancer
dc.subject.otherBrain stroke
dc.subject.otherDifraction tomography
dc.subject.otherUWB
dc.titleMulti-antenna multi-frequency microwave imaging systems for biomedical applications
dc.typeDoctoral thesis
dc.subject.lemacImatgeria mèdica
dc.subject.lemacAntenes (Electrònica)
dc.subject.lemacBioenginyeria
dc.identifier.doi10.5821/dissertation-2117-95274
dc.identifier.dlB 15992-2014
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
dc.identifier.tdxhttp://hdl.handle.net/10803/134967


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple