Show simple item record

dc.contributor.authorBalbuena Martínez, Maria Camino Teófila
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III
dc.date.accessioned2010-10-06T12:33:26Z
dc.date.available2010-10-06T12:33:26Z
dc.date.created2009-01
dc.date.issued2009-01
dc.identifier.citationBalbuena, C. A construction of small regular bipartite graphs of girth 8. "Discrete mathematics and theoretical computer science", Gener 2009, vol. 11, núm. 2, p. 33-46.
dc.identifier.issn1365-8050
dc.identifier.urihttp://hdl.handle.net/2117/9455
dc.description.abstractLet q be a prime a power and k an integer such that 3 ≤ k ≤ q. In this paper we present a method using Latin squares to construct adjacency matrices of k-regular bipartite graphs of girth 8 on $2(kq^{2}-q)$ vertices. Some of these graphs have the smallest number of vertices among the known regular graphs with girth 8.
dc.format.extent14 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Teoria de grafs
dc.subject.lcshMagic squares
dc.subject.lcshCages
dc.subject.lcshGraph theory
dc.subject.lcshMatrices
dc.titleA construction of small regular bipartite graphs of girth 8
dc.typeArticle
dc.subject.lemacQuadrats màgics
dc.subject.lemacGrafs, Teoria de
dc.subject.lemacMatrius (Matemàtica)
dc.contributor.groupUniversitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
dc.relation.publisherversionhttp://www-ma3.upc.es/users/balbuena/PAPERS/consgirth8.pdf
dc.rights.accessOpen Access
local.identifier.drac643614
dc.description.versionPostprint (published version)
local.citation.authorBalbuena, C.
local.citation.publicationNameDiscrete mathematics and theoretical computer science
local.citation.volume11
local.citation.number2
local.citation.startingPage33
local.citation.endingPage46


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record