Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.092 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ocular Reduction in EEG Signals Based on Adaptive Filtering, Regression and Blind Source Separation

Thumbnail
View/Open
article principal (687,5Kb)
 
10.1007/s10439-008-9589-6
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/9379

Show full item record
Romero Lafuente, SergioMés informacióMés informacióMés informació
Mañanas Villanueva, Miguel ÁngelMés informacióMés informacióMés informació
Barbanoj, Manel J.
Document typeArticle
Defense date2009-01
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Quantitative electroencephalographic (EEG) analysis is very useful for diagnosing dysfunctional neural states and for evaluating drug effects on the brain, among others. However, the bidirectional contamination between electrooculographic (EOG) and cerebral activities can mislead and induce wrong conclusions from EEG recordings. Different methods for ocular reduction have been developed but only few studies have shown an objective evaluation of their performance. For this purpose, the following approaches were evaluated with simulated data: regression analysis, adaptive filtering, and blind source separation (BSS). In the first two, filtered versions were also taken into account by filtering EOG references in order to reduce the cancellation of cerebral high frequency components in EEG data. Performance of these methods was quantitatively evaluated by level of similarity, agreement and errors in spectral variables both between sources and corrected EEG recordings. Topographic distributions showed that errors were located at anterior sites and especially in frontopolar and lateral–frontal regions. In addition, these errors were higher in theta and especially delta band. In general, filtered versions of time-domain regression and of adaptive filtering with RLS algorithm provided a very effective ocular reduction. However, BSS based on second order statistics showed the highest similarity indexes and the lowest errors in spectral variables.
CitationRomero, S.; Mañanas, M.; Barbanoj, M. Ocular Reduction in EEG Signals Based on Adaptive Filtering, Regression and Blind Source Separation. "Annals of biomedical engineering", Gener 2009, vol. 37, núm. 1, p. 176-191. 
URIhttp://hdl.handle.net/2117/9379
DOI10.1007/s10439-008-9589-6
ISSN0090-6964
Publisher versionhttp://www.springerlink.com/content/l664747783w84801/
Collections
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Articles de revista [1.538]
  • SISBIO - Senyals i Sistemes Biomèdics - Articles de revista [70]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
romero 2009a.pdfarticle principal687,5KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina