Show simple item record

dc.contributor.authorDíaz Cort, Josep
dc.contributor.authorPenrose, Matthew
dc.contributor.authorPetit Silvestre, Jordi
dc.contributor.authorSerna Iglesias, María José
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciències de la Computació
dc.identifier.citationDiaz, J., Penrose, M., Petit, J., Serna, M. "Convergence theorems for some layout measures on random lattice and random geometric graphs". 1999.
dc.description.abstractThis work deals with convergence theorems and bounds on the cost of several layout measures for lattice graphs, random lattice graphs and sparse random geometric graphs. For full square lattices, we give optimal layouts for the problems still open. Our convergence theorems can be viewed as an analogue of the Beardwood, Halton and Hammersley theorem for the Euclidian TSP on random points in the $d$-dimensional cube. As the considered layout measures are non-subadditive, we use percolation theory to obtain our results on random lattices and random geometric graphs. In particular, we deal with the subcritical regimes on these class of graphs.
dc.format.extent17 p.
dc.subjectÀrees temàtiques de la UPC::Informàtica::Informàtica teòrica
dc.subject.otherGeometric graphs
dc.subject.otherConvergence theorems
dc.subject.otherLattice graphs
dc.subject.otherBeardwood, Halton and Hammersley theorem
dc.subject.otherSubcritical regimes
dc.titleConvergence theorems for some layout measures on random lattice and random geometric graphs
dc.typeExternal research report
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
upcommons.citation.authorDiaz, J., Penrose, M., Petit, J., Serna, M.

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder