Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
60.715 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental assessment of probabilistic integrated object recognition and tracking methods

Thumbnail
View/Open
1097-Experimental-assessment-of-probabilistic-integrated-object-recognition-and-tracking-methods.pdf (139,4Kb)
Share:
 
 
10.1007/978-3-642-10268-4_96
 
  View Usage Statistics
Cita com:
hdl:2117/9245

Show full item record
Serratosa Casanelles, FrancescMés informació
Amézquita Gómez, Nicolás
Alquézar Mancho, RenéMés informacióMés informació
Document typeConference report
Defense date2009
PublisherSpringer Verlag
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
This paper presents a comparison of two classifiers that are used as a first step within a probabilistic object recognition and tracking framework called PIORT. This first step is a static recognition module that provides class probabilities for each pixel of the image from a set of local features. One of the implemented classifiers is a Bayesian method based on maximum likelihood and the other one is based on a neural network. The experimental results show that, on one hand, both classifiers (although they are very different approaches) yield a similar performance when they are integrated within the tracking framework. And on the other hand, our object recognition and tracking framework obtains good results when compared to other published tracking methods in video sequences taken with a moving camera and including total and partial occlusions of the tracked object.
CitationSerratosa Casanelles, F.; Amézquita Gómez, N.; Alquézar Mancho, R. Experimental assessment of probabilistic integrated object recognition and tracking methods. A: Iberoamerican Congress on Pattern Recognition. "Lecture Notes in Computer Science vol 5856". Springer Verlag, 2009, p. 817-824. DOI 10.1007/978-3-642-10268-4_96. 
URIhttp://hdl.handle.net/2117/9245
DOI10.1007/978-3-642-10268-4_96
Publisher versionhttp://dx.doi.org/10.1007/978-3-642-10268-4_96
Collections
  • Departament de Ciències de la Computació - Ponències/Comunicacions de congressos [1.240]
  • SOCO - Soft Computing - Ponències/Comunicacions de congressos [110]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
1097-Experiment ... n-and-tracking-methods.pdf139,4KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina