Show simple item record

dc.contributor.authorCompta Creus, Albert
dc.contributor.authorHelmke, Uwe
dc.contributor.authorPeña Carrera, Marta
dc.contributor.authorPuerta Coll, Xavier
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.description.abstractWe study the set M of pairs (f; V ), defined by an endomorphism f of Fn and a d- dimensional f–invariant subspace V . It is shown that this set is a smooth manifold that defines a vector bundle on the Grassmann manifold. We apply this study to derive conditions for the Lipschitz stability of invariant subspaces and determine versal deformations of the elements of M with respect to a natural equivalence relation introduced on it.
dc.format.extent14 pages
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.subject.lcshGlobal analysis (Mathematics)
dc.titleSimultaneous versal deformations of endomorphisms and invariant subspaces
dc.subject.lemacAnàlisi global (Matemàtica)
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.subject.amsClassificació AMS::58 Global analysis, analysis on manifolds::58K Theory of singularities and catastrophe theory
dc.rights.accessOpen Access

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 2.5 Spain