Show simple item record

dc.contributor.authorEstrada Petrocelli, Luis
dc.contributor.authorTorres Cebrián, Abel
dc.contributor.authorSarlabous Uranga, Leonardo
dc.contributor.authorJané Campos, Raimon
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.date.accessioned2016-11-04T13:44:22Z
dc.date.available2016-11-04T13:44:22Z
dc.date.issued2016-03-01
dc.identifier.citationEstrada, L., Torres, A., Sarlabous, L., Jane, R. Improvement in neural respiratory drive estimation from diaphragm electromyographic signals using fixed sample entropy. "IEEE Journal of Biomedical and Health Informatics", 1 Març 2016, vol. 20, núm. 2, p. 476-485.
dc.identifier.issn2168-2194
dc.identifier.urihttp://hdl.handle.net/2117/91485
dc.description.abstractDiaphragm electromyography is a valuable technique for the recording of electrical activity of the diaphragm. The analysis of diaphragm electromyographic (EMGdi) signal amplitude is an alternative approach for the quantification of the neural respiratory drive (NRD). The EMGdi signal is, however, corrupted by electrocardiographic (ECG) activity, and this presence of cardiac activity can make the EMGdi interpretation more difficult. Traditionally, the EMGdi amplitude has been estimated using the average rectified value (ARV) and the root mean square (RMS). In this study, surface EMGdi signals were analyzed using the fixed sample entropy (fSampEn) algorithm, and compared to the traditional ARV and RMS methods. The fSampEn is calculated using a tolerance value fixed and independent of the standard deviation of the analysis window. Thus, this method quantifies the amplitude of the complex components of stochastic signals (such as EMGdi), and being less affected by changes in amplitude due to less complex components (such as ECG). The proposed method was tested in synthetic and recorded EMGdi signals. fSampEn was less sensitive to the effect of cardiac activity on EMGdi signals with different levels of NRD than ARV and RMS amplitude parameters. The mean and standard deviation of the Pearson's correlation values between inspiratorymouth pressure (an indirect measure of the respiratory muscle activity) and fSampEn, ARV, and RMS parameters, estimated in the recorded EMGdi signal at tidal volume (without inspiratory load), were 0.38 +/- 0.12, 0.27 +/- 0.11, and 0.11 +/- 0.13, respectively. Whereas at 33 cmH(2)O (maximum inspiratory load) were 0.83 +/- 0.02, 0.76 +/- 0.07, and 0.61 +/- 0.19, respectively. Our findings suggest that the proposed method may improve the evaluation of NRD.
dc.format.extent10 p.
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria biomèdica
dc.subject.lcshElectromyography
dc.subject.lcshMuscles
dc.subject.otherDiaphragm muscle
dc.subject.otherelectromyography
dc.subject.otherfixed sample entropy (fSampEn)
dc.subject.otherneural respiratory drive
dc.subject.otherHEALTHY-SUBJECTS
dc.subject.otherEMG SIGNALS
dc.subject.otherSURFACE ELECTROMYOGRAPHY
dc.subject.otherAPPROXIMATE ENTROPY
dc.subject.otherONSET DETECTION
dc.subject.otherMUSCLE FATIGUE
dc.subject.otherFORCE
dc.subject.otherECG
dc.subject.otherCOMPLEXITY
dc.subject.otherCOPD
dc.titleImprovement in neural respiratory drive estimation from diaphragm electromyographic signals using fixed sample entropy
dc.typeArticle
dc.subject.lemacElectromiografia
dc.subject.lemacMúsculs
dc.contributor.groupUniversitat Politècnica de Catalunya. BIOSPIN - Biomedical Signal Processing and Interpretation
dc.identifier.doi10.1109/JBHI.2015.2398934
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
local.identifier.drac18229093
dc.description.versionPostprint (author's final draft)
local.citation.authorEstrada, L.; Torres, A.; Sarlabous, L.; Jane, R.
local.citation.publicationNameIEEE Journal of Biomedical and Health Informatics
local.citation.volume20
local.citation.number2
local.citation.startingPage476
local.citation.endingPage485


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain