Show simple item record

dc.contributor.authorMartínez-Seara Alonso, M. Teresa
dc.contributor.authorGuàrdia Munarriz, Marcel
dc.contributor.authorHogan, S. John
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.date.accessioned2010-09-28T11:39:11Z
dc.date.available2010-09-28T11:39:11Z
dc.date.created2010
dc.date.issued2010
dc.identifier.citationMartínez-Seara, M.; Guardia, M.; Hogan, J. An analytical approach to codimension-2 sliding bifurcations in the dry friction oscillator. "SIAM journal on applied dynamical systems", 2010, vol. 9, núm. 3, p. 769-798.
dc.identifier.issn1536-0040
dc.identifier.urihttp://hdl.handle.net/2117/9131
dc.description.abstractIn this paper, we analytically consider sliding bifurcations of periodic orbits in the dry-friction oscillator. The system depends on two parameters: F, which corresponds to the intensity of the friction, and ω, the frequency of the forcing. We prove the existence of infinitely many codimension-2 bifurcation points and focus our attention on two of them: A1 := (ω −1, F) = (2, 1/3) and B1 := (ω −1, F) = (3, 0). We derive analytic expressions in (ω −1, F) parameter space for the codimension-1 bifurcation curves that emanate from A1 and B1. Our results show excellent agreement with the numerical calculations of Kowalczyk and Piiroinen [Phys. D, 237 (2008), pp. 1053–1073].
dc.format.extent30 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.otherFilippov systems
dc.subject.otherperiodic orbits
dc.subject.othersliding bifurcations
dc.subject.othercodimension-2 points
dc.titleAn analytical approach to codimension-2 sliding bifurcations in the dry friction oscillator
dc.typeArticle
dc.subject.lemacSistemes dinàmics
dc.subject.lemacEquacions diferencials
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.identifier.doi10.1137/090766826
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::34 Ordinary differential equations::34A General theory
dc.subject.amsClassificació AMS::34 Ordinary differential equations::34C Qualitative theory
dc.subject.amsClassificació AMS::37 Dynamical systems and ergodic theory::37G Local and nonlocal bifurcation theory
dc.relation.publisherversionhttp://siamdl.aip.org/dbt/dbt.jsp?KEY=SJADAY&Volume=9&Issue=3
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac2640041
dc.description.versionPostprint (published version)
local.citation.authorMartínez-Seara, M.; Guardia, M.; Hogan, J.
local.citation.publicationNameSIAM journal on applied dynamical systems
local.citation.volume9
local.citation.number3
local.citation.startingPage769
local.citation.endingPage798


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record