Show simple item record

dc.contributor.authorLumbreras, Alberto
dc.contributor.authorGavaldà Mestre, Ricard
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Llenguatges i Sistemes Informàtics
dc.identifier.citationLumbreras, A., Gavaldà, R. "Applying trust metrics based on user interactions to recommendation in social networks". 2012.
dc.description.abstractRecommender systems have been strongly researched within the last decade. With the arising and popularization of digital social networks a new field has been opened for social recommendations. Considering the network topology, users interactions, or estimating trust between users are some of the new strategies that recommender systems can take into account in order to adapt their techniques to these new scenarios. We introduce MarkovTrust, a way to infer trust from Twitter interactions and to compute trust between distant users. MarkovTrust is based on Markov chains, which makes it simple to be implemented and computationally efficient. We study the properties of this trust metric and study its application in a recommender system of tweets.
dc.format.extent8 p.
dc.subjectÀrees temàtiques de la UPC::Informàtica::Intel·ligència artificial
dc.subject.otherSocial networks
dc.subject.otherData mining
dc.subject.otherMachine learning
dc.titleApplying trust metrics based on user interactions to recommendation in social networks
dc.typeExternal research report
dc.contributor.groupUniversitat Politècnica de Catalunya. LARCA - Laboratori d'Algorísmia Relacional, Complexitat i Aprenentatge
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
local.citation.authorLumbreras, A.; Gavaldà, R.

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder