Show simple item record

dc.contributor.authorLuis, D. P.
dc.contributor.authorLopez Lemus, J.
dc.contributor.authorMaspoch Rulduà, Mª Lluïsa
dc.contributor.authorFranco-Urquiza, Edgar
dc.contributor.authorSaint Martin, H.
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica
dc.date.accessioned2016-11-02T07:31:08Z
dc.date.available2017-05-25T00:30:30Z
dc.date.issued2016-01-01
dc.identifier.citationLuis, D., Lopez, J., Maspoch, M., Franco-Urquiza, E., Saint, H. Methane hydrate: shifting the coexistence temperature to higher temperatures with an external electric field. "Molecular simulation", 1 Gener 2016, vol. 42, núm. 12, p. 1014-1023.
dc.identifier.issn0892-7022
dc.identifier.urihttp://hdl.handle.net/2117/91311
dc.description.abstractIn the present work, we used molecular dynamic simulations of the equilibrium NPT ensemble to examine the effect of an external electric field on the three-phase coexistence temperature of methane gas, liquid water and methane hydrate. For these simulations, we used the TIP4P/Ice rigid water model and a single-site model for methane. The simulations were implemented at two pressures, 400 and 250bar, over temperatures ranging from 285 to 320K and from 280 to 315K, respectively. The application of an external electric field in the range of 0.1-0.9caused the effect of the thermal vibrations of the water molecules to become attenuated. This resulted in a shift of the three-phase coexistence temperature to higher temperatures. Electric fields below this range did not cause a difference in the coexistence temperature, and electric fields above this range enhanced the thermal effect. The shift had a magnitude of 22.5K on average.
dc.format.extent10 p.
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria dels materials
dc.subject.lcshMolecular dynamics
dc.subject.lcshMethane
dc.subject.lcshClathrate compounds
dc.subject.otherMolecular dynamics
dc.subject.othermethane clathrate
dc.subject.otherexternal electric field
dc.subject.othermolecular-dynamics simulations
dc.subject.otherlennard-jones system
dc.subject.otherliquid water
dc.subject.othercomputer-simulation
dc.subject.otherice nucleation
dc.subject.otherhomogeneous nucleation
dc.subject.otherdissociation process
dc.subject.otherpotential functions
dc.subject.otherethylene-oxide
dc.subject.othercrystal-growth
dc.titleMethane hydrate: shifting the coexistence temperature to higher temperatures with an external electric field
dc.typeArticle
dc.subject.lemacDinàmica molecular
dc.subject.lemacCompostos de clatrat
dc.subject.lemacMeta-anàlisi
dc.contributor.groupUniversitat Politècnica de Catalunya. POLY2 - Polyfunctional polymeric materials
dc.identifier.doi10.1080/08927022.2016.1139704
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.tandfonline.com/doi/full/10.1080/08927022.2016.1139704#.V3JVf9KLTcs
dc.rights.accessOpen Access
local.identifier.drac18722308
dc.description.versionPostprint (author's final draft)
local.citation.authorLuis, D.; Lopez, J.; Maspoch, M.; Franco-Urquiza, E.; Saint, H.
local.citation.publicationNameMolecular simulation
local.citation.volume42
local.citation.number12
local.citation.startingPage1014
local.citation.endingPage1023


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain