DSpace DSpace UPC
  Pàgina principal | Llistar continguts | Cerca avançada | Com participar-hi Català   Castellano   English  


Títol: Quantitative estimates on the normal form around a non semi-simple 1:-1 resonant periodic orbit
Autor: Ollé Torner, Mercè
Pacha Andújar, Juan Ramón
Villanueva Castelltort, Jordi
Altres autors/autores: Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I; Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
Matèries: Differential equations
Bifurcation theory
Hamiltonian systems
Quantitative estimates
periodic orbit
Equacions diferencials ordinàries
Bifurcació, Teoria de la
Hamilton, Sistemes de
/Classificació AMS/37 Dynamical systems and ergodic theory/37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems
/Classificació AMS/34 Ordinary differential equations/34C Qualitative theory
/Classificació AMS/37 Dynamical systems and ergodic theory/37G Local and nonlocal bifurcation theory
Tipus de document: Article
Descripció: The purpose of thiswork is to give precise estimates for the size of the remainder of the normalized Hamiltonian around a non-semi-simple 1 : −1 resonant periodic orbit, as a function of the distance to the orbit. We consider a periodic orbit of a real analytic three-degrees of freedom Hamiltonian system having a pairwise collision of its non-trivial characteristic multipliers on the unit circle. Under generic hypotheses of non-resonance and non-degeneracy of the collision, we present a constructive methodology to reduce the Hamiltonian around the orbit to its (integrable) normal form, up to any given order. This constructive process allows to obtain quantitative estimates for the size of the remainder of the normal form, as a function of the normalizing order. By selecting appropriately this order in terms of the distance R to the resonant orbit (measured using suitable coordinates), r = ropt(R) := 2 + ?exp(W(log(1/R1/(τ+1+ε))))?, we have proved that the size of the remainder can be bounded (for small R) by Rropt(R)/2. Here, W(·) stands for Lambert’s W function and verifies that W(z) exp(W(z)) = z, τ ? 1 is the exponent of the required Diophantine condition and ε > 0 is any small quantity. The reasons leading to this bound instead of classical exponentially small estimates are also discussed.
Altres identificadors i accés: http://hdl.handle.net/2117/912
Disponible al dipòsit:E-prints UPC
Comparteix:


SFX Query

Tots els ítems dipositats a UPCommons estan protegits per drets d'autor.

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius