Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.058 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • MAK - Matemàtica Aplicada a la Criptografia
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • MAK - Matemàtica Aplicada a la Criptografia
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An algebraic framework for Diffie–Hellman assumptions

Thumbnail
View/Open
JOCmain.pdf (757,7Kb)
 
10.1007/s00145-015-9220-6
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/91050

Show full item record
Escala Ribas, Alex
Herold, Gottfried
Kiltz, Eike
Ràfols Salvador, Carla
Villar Santos, Jorge LuisMés informacióMés informacióMés informació
Document typeArticle
Defense date2015-10-22
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
We put forward a new algebraic framework to generalize and analyze Diffie-Hellman like Decisional Assumptions which allows us to argue about security and applications by considering only algebraic properties. Our D`,k-MDDH assumption states that it is hard to decide whether a vector in ¿ìs linearly dependent of the columns of some matrix in ¿`×k sampled according to distribution D`,k. It covers known assumptions such as DDH, 2-Lin (linear assumption), and k-Lin (the k-linear assumption). Using our algebraic viewpoint, we can relate the generic hardness of our assumptions in m-linear groups to the irreducibility of certain polynomials which describe the output of D`,k. We use the hardness results to find new distributions for which the D`,k-MDDH-Assumption holds generically in m-linear groups. In particular, our new assumptions 2-SCasc and 2-ILin are generically hard in bilinear groups and, compared to 2-Lin, have shorter description size, which is a relevant parameter for efficiency in many applications. These results support using our new assumptions as natural replacements for the 2-Lin Assumption which was already used in a large number of applications. To illustrate the conceptual advantages of our algebraic framework, we construct several fundamental primitives based on any MDDH-Assumption. In particular, we can give many instantiations of a primitive in a compact way, including public-key encryption, hash-proof systems, pseudo-random functions, and Groth-Sahai NIZK and NIWI proofs. As an independent contribution we give more efficient NIZK and NIWI proofs for membership in a subgroup of ¿` . The results imply very significant efficiency improvements for a large number of schemes.
CitationEscala, A., Herold, G., Kiltz, E., Rafols, C., Villar, J. An algebraic framework for Diffie–Hellman assumptions. "Journal of cryptology", 2017, vol. 30, núm. 1, p. 242-288. 
URIhttp://hdl.handle.net/2117/91050
DOI10.1007/s00145-015-9220-6
ISSN0933-2790
Publisher versionhttp://link.springer.com/article/10.1007%2Fs00145-015-9220-6
Collections
  • MAK - Matemàtica Aplicada a la Criptografia - Articles de revista [48]
  • Departament de Matemàtiques - Articles de revista [3.471]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
JOCmain.pdf757,7KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina