Show simple item record

dc.contributor.authorMuñoz Romero, José
dc.contributor.authorMosaffa, Payman
dc.contributor.authorMao, Yanlan
dc.contributor.authorTetley, Rob
dc.contributor.authorAsadipour, Nina
dc.contributor.authorRodríguez Ferran, Antonio
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2016-10-18T10:43:30Z
dc.date.available2016-10-18T10:43:30Z
dc.date.issued2016
dc.identifier.citationMuñoz, J.J., Mosafa, P., Mao, Y., Tetley, R., Asadipour, N., Rodriguez-Ferran, A. Hybrid cell centred/vertex model for large tissue deformations. A: ECCOMAS Congress 2016. "European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2016". Creta: 2016, p. 1-9.
dc.identifier.urihttp://hdl.handle.net/2117/90839
dc.description.abstractMacroscopic deformations in embryonic soft tissues are due to the intra-cellular remodelling and cell intercalation. We here present a computational approach that can handle the two types of deformations, and also take into account the active cell response. The model resorts to cell-centred techniques, where particles represent cell nuclei, and to vertex models, where the vertices represent cell boundaries. This hybrid approach allows to consider separately intracellular and inter-cellular forces, and at the same time impose cell incompressibility. In the proposed model, the cell boundaries (defined by vertices) and cell nuclei (or cellcentres) networks are coupled through an interpolation scheme, which is eventually relaxed in order to smooth the cell boundaries. We show that this coupling between the two networks modifies the equilibrium equations and stabilises the vertex network. Incompressibility is implemented through a penalty method. The resulting model can be implemented in two- and three-dimensions, and is complemented with active rheological models. We apply the model to simulate the stretching and relaxation of cell monolayers, and to simulate wound healing process in the wing disc of Drosophila fly embryo. We show that the numerical results agree with the experimental measurements.
dc.format.extent9 p.
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria biomèdica::Enginyeria de teixits
dc.subject.lcshMolecular biology
dc.subject.otherCell-centred
dc.subject.othervertex
dc.subject.othertissue mechanics
dc.subject.otherVoronoi
dc.subject.othernetwork
dc.subject.otherwound healing
dc.subject.otherembryogenesis
dc.titleHybrid cell centred/vertex model for large tissue deformations
dc.typeConference report
dc.subject.lemacBiologia molecular
dc.subject.lemacTeixits -- Propietats mecàniques
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.relation.publisherversionhttps://www.eccomas2016.org/proceedings/pdf/10661.pdf
dc.rights.accessOpen Access
drac.iddocument18722187
dc.description.versionPostprint (published version)
upcommons.citation.authorMuñoz, J.J., Mosafa, P., Mao, Y., Tetley, R., Asadipour, N., Rodriguez-Ferran, A.
upcommons.citation.contributorECCOMAS Congress 2016
upcommons.citation.pubplaceCreta
upcommons.citation.publishedtrue
upcommons.citation.publicationNameEuropean Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2016
upcommons.citation.startingPage1
upcommons.citation.endingPage9


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain