Show simple item record

dc.contributor.authorCastro Pérez, Jordi
dc.contributor.authorGonzález Alastrué, José Antonio
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa
dc.date.accessioned2010-09-23T13:59:07Z
dc.date.available2010-09-23T13:59:07Z
dc.date.created2010-09
dc.date.issued2010-09
dc.identifier.citationCastro, J.; González, J. A tool for analyzing and fixing infeasible RCTA instances. "Lecture notes in computer science", Setembre 2010, vol. 6344, p. 17-28.
dc.identifier.issn0302-9743
dc.identifier.urihttp://hdl.handle.net/2117/9074
dc.description.abstractMinimum-distance controlled tabular adjustment methods (CTA), and its restricted variants (RCTA), is a recent perturbative approach for tabular data protection. Given a table to be protected, the purpose of RCTA is to find the closest table that guarantees protection levels for the sensitive cells. This is achieved by adding slight adjustments to the remaining cells, possibly excluding a subset of them (usually, the total cells) which preserve their original values. If either protection levels are large, or the bounds for cell deviations are tight, or too many cell values have to be preserved, the resulting mixed integer linear problem may be reported as infeasible. This work describes a tool developed for analyzing infeasible instances. The tool is based on a general elastic programming approach, which considers an artificial problem obtained by relaxing constraints and bounds through the addition of extra elastic variables. The tool allows selecting the subset of constraints and bounds to be relaxed, such that an elastic filter method can be applied for isolating a subset of infeasible table relations, protection levels, and cell bounds. Some computational experiments are reported using real-world instances.
dc.format.extent12 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa::Optimització
dc.subject.lcshElastic
dc.subject.lcshSystem theory
dc.subject.otherStatistical disclosure control Controlled tabular adjustment Mixed integer linear programming Infeasibility in optimization Elastic constraints Elastic filter
dc.titleA tool for analyzing and fixing infeasible RCTA instances
dc.typeArticle
dc.contributor.groupUniversitat Politècnica de Catalunya. GNOM - Grup d'Optimització Numèrica i Modelització
dc.identifier.doi0.1007/978-3-642-15838-4_2
dc.subject.amsClassificació AMS::93 Systems Theory; Control::93A General
dc.relation.publisherversionhttp://www.springerlink.com/content/201x3484w0w65611/
dc.rights.accessRestricted access - publisher's policy
drac.iddocument2865547
dc.description.versionPostprint (published version)
upcommons.citation.authorCastro, J.; González, J.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameLecture notes in computer science
upcommons.citation.volume6344
upcommons.citation.startingPage17
upcommons.citation.endingPage28


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder