Mostrar el registro sencillo del ítem

dc.contributor.authorGallego Vila, Jaime
dc.contributor.authorPardàs Feliu, Montse
dc.contributor.authorHaro, Gloria
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.date.accessioned2010-09-22T10:30:58Z
dc.date.available2010-09-22T10:30:58Z
dc.date.created2009
dc.date.issued2009
dc.identifier.citationGallego, J.; Pardas, M.; Haro, G. Bayesian foreground segmentation and tracking using pixel-wise background model and region-based foreground model. A: IEEE International Conference on Image Processing. "16th IEEE International Conference on Image Processing". Cairo: IEEE Press. Institute of Electrical and Electronics Engineers, 2009, p. 3205-3208.
dc.identifier.urihttp://hdl.handle.net/2117/9018
dc.description.abstractIn this paper we present a segmentation system for monocular video sequences with static camera that aims at foreground/ background separation and tracking. We propose to combine a simple pixel-wise model for the background with a general purpose region based model for the foreground. The background is modeled using one Gaussian per pixel, thus achieving a precise and easy to update model. The foreground is modeled using a Gaussian Mixture Model with feature vectors consisting of the spatial (x, y) and colour (r, g, b) components. The spatial components of this model are updated using the Expectation Maximization algorithm after the classification of each frame. The background model is formulated in the 5 dimensional feature space in order to be able to apply a Maximum A Posteriori framework for the classification. The classification is done using a graph cut algorithm that allows taking into account neighborhood information. The results presented in the paper show the improvement of the system in situations where the foreground objects have similar colors to those of the background.
dc.format.extent4 p.
dc.language.isoeng
dc.publisherIEEE Press. Institute of Electrical and Electronics Engineers
dc.subjectÀrees temàtiques de la UPC::Informàtica::Infografia
dc.subject.lcshImage analysis -- Computer-Assisted
dc.titleBayesian foreground segmentation and tracking using pixel-wise background model and region-based foreground model
dc.typeConference report
dc.subject.lemacVídeo digital -- Edició -- Processament de dades
dc.contributor.groupUniversitat Politècnica de Catalunya. GPI - Grup de Processament d'Imatge i Vídeo
dc.identifier.doi10.1109/ICIP.2009.5414380
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5414380
dc.rights.accessOpen Access
drac.iddocument2642377
dc.description.versionPostprint (published version)
upcommons.citation.authorGallego, J.; Pardas, M.; Haro, G.
upcommons.citation.contributorIEEE International Conference on Image Processing
upcommons.citation.pubplaceCairo
upcommons.citation.publishedtrue
upcommons.citation.publicationName16th IEEE International Conference on Image Processing
upcommons.citation.startingPage3205
upcommons.citation.endingPage3208


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Todos los derechos reservados.Esta obra está protegida por los derechos de propiedad intelectual e industrial. Sin perjuicio de las exenciones legales existentes, queda prohibida su reproducción, distribución, comunicación pública o transformación sin la autorización del titular de los derechos