Show simple item record

dc.contributor.authorDelshams Valdés, Amadeu
dc.contributor.authorFedorov, Yuri
dc.contributor.authorRamírez Ros, Rafael
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.date.accessioned2007-05-07T14:41:16Z
dc.date.available2007-05-07T14:41:16Z
dc.date.created2000
dc.date.issued2000
dc.identifier.urihttp://hdl.handle.net/2117/895
dc.description.abstractThe billiard motion inside an ellipsoid of ${\bf R}^{3}$ is completely integrable. If the ellipsoid is not of revolution, there are many orbits bi-asymptotic to its major axis. The set of bi-asymptotic orbits is described from a geometrical, dynamical, and topological point of view. It contains eight surfaces, called separatrices. The splitting of the separatrices under symmetric perturbations of the ellipsoid is studied using a symplectic discrete version of the Poincar\'e-Melnikov method, with a special emphasis in the following situations: close to the flat limit (when the minor axis of the ellipsoid is small enough), close to the oblate limit (when the ellipsoid is close to an ellipsoid of revolution around its minor axis) and close to the prolate limit (when the ellipsoid is close to an ellipsoid of revolution around its major axis). It is proved that any non-quadratic entire symmetric perturbation breaks the integrability and splits the separatrices, although (at least) sixteen symmetric homoclinic orbits persist. Close to the flat limit, these orbits become transverse under very general polynomial perturbations of the ellipsoid. Finally, a particular quartic symmetric perturbation is analyzed in great detail. Close to the flat and to the oblate limits, the sixteen symmetric homoclinic orbits are the unique primary homoclinic orbits. Close to the prolate limit, the number of primary homoclinic orbits undergoes infinitely many bifurcations. The first bifurcation curves are computed numerically.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/es/
dc.subject.lcshHamiltonian systems
dc.subject.lcshDifferentiable dynamical systems
dc.subject.otherTwist maps
dc.subject.otherbilliards
dc.subject.otherseparatrix splitting
dc.subject.otherMelnikov potential
dc.titleHomoclinic billiard orbits inside symmetrically perturbed ellipsoids
dc.typeArticle
dc.subject.lemacHamilton, Sistemes de
dc.subject.lemacSistemes dinàmics diferenciables
dc.subject.lemacTeoria ergòdica
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.subject.amsClassificació AMS::37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems
dc.subject.amsClassificació AMS::37 Dynamical systems and ergodic theory::37N Applications
dc.rights.accessOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 2.5 Spain