Show simple item record

dc.contributor.authorPuig Sadurní, Joaquim
dc.contributor.authorSimó Torres, Carlos
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.date.accessioned2010-09-17T09:46:21Z
dc.date.available2010-09-17T09:46:21Z
dc.date.issued2010-07
dc.identifier.urihttp://hdl.handle.net/2117/8946
dc.description.abstractAbstract. In this paper we investigate numerically the spectrum of some representative examples of discrete one-dimensional Schr¨odinger operators with quasi-periodic potential in terms of a perturbative constant b and the spectral parameter a. Our examples include the well-known Almost Mathieu model, other trigonometric potentials with a single quasi-periodic frequency and generalisations with two and three frequencies. We computed numerically the rotation number and the Lyapunov exponent to detect open and collapsed gaps, resonance tongues and the measure of the spectrum. We found that the case with one frequency was significantly different from the case of several frequencies because the latter has all gaps collapsed for a sufficiently large value of the perturbative constant and thus the spectrum is a single spectral band with positive Lyapunov exponent. In contrast, in the cases with one frequency considered, gaps are always dense in the spectrum, although some gaps may collapse either for a single value of the perturbative constant or for a range of values. In all cases we found that there is a curve in the (a, b)-plane which separates the regions where the Lyapunov exponent is zero in the spectrum and where it is positive. Along this curve, which is b = 2 in the Almost Mathieu case, the measure of the spectrum is zero.
dc.format.extent22 p.
dc.language.isoeng
dc.relation.ispartofseries[prepr201007PuiS]
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.otherNumerical explorations
dc.subject.otherQuasi-Periodic Schr\
dc.subject.otherQuasi-Periodic Cocycles and Skew-products
dc.subject.otherSpectral Gaps
dc.subject.otherResonance Tongues
dc.subject.otherRotation number
dc.subject.otherLyapunov exponent
dc.titleResonance tongues and spectral gaps in quasi-periodic schrödinger operators with one or more frequencies. A numerical exploration
dc.typeExternal research report
dc.subject.lemacTeoria espectral (Matemàtica)
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.relation.publisherversionhttp://www.ma1.upc.edu/~jpuig/preprints/puig-simo_10_1.pdf
dc.rights.accessOpen Access
drac.iddocument2746379
dc.description.versionPreprint


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain