Show simple item record

dc.contributorForné Muñoz, Jorge
dc.contributorRebollo Monedero, David
dc.contributor.authorHernández Baigorri, César
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Telemàtica
dc.date.accessioned2016-07-27T16:56:25Z
dc.date.available2017-07-28T00:30:25Z
dc.date.issued2016-06-17
dc.identifier.urihttp://hdl.handle.net/2117/89282
dc.descriptionThis research proposal addresses fundamental challenges in privacy-enhancing technologies, related to the risk of statistical disclosure of sensitive information in large-scale datasets. The magnitude of its potential impact emanates from its broad applicability to information systems designed for the collection, analysis or dissemination of anonymized data in socioeconomic contexts including, but not limited to, healthcare, targeted advertising, personalized content recommendation, social networks and e-voting. Statistical disclosure control (SDC) concerns the post
dc.description.abstract Every one of us is constantly releasing data about our interests, preferences or affiliations in a conscious or unconscious way. Improvements on the technological field have led to an enormous volume of data on each individual available on the Internet. Using and publishing sensitive data (e.g. social research, marketing purposes) have stimulated the need for anonymization techniques, where a compromise between usefulness of the data and privacy protection is sought. k-Anonymous micro¬aggregation permits releasing a set of data where each person cannot be distinguished from, at least, k-1 individuals while maintaining similar statistical dependence between attributes. Currently, micro¬aggregation algorithms are commonly used in this field thanks to the simplicity and quality provided. However, used on large datasets these methods result expensive in terms of computation time. This work addresses the need of running k-anonymization in a faster, efficient manner while introducing minimum distortion loss. To do so, we partition the original dataset in two fractions that will be processed in two consecutive steps enabling the possibility of starting even before receiving the entire dataset. Intuitively the process would be indicated for anonymizing surveys, electoral processes, and all manner of polls, but the method has proved to be faster even without a head start.
dc.description.abstractCada uno de nosotros está constantemente - ya sea de manera consciente o inconsciente- generando datos sobre nuestros intereses, preferencias o afiliaciones. Los avances en el campo tecnológico han llevado a que haya un enorme volumen de datos disponible en internet sobre cada individuo. El uso y publicación de datos sensibles (para investigación social o de marketing) han generado la necesidad de técnicas de anonimización, donde se busca un compromiso entre la utilidad de los datos y la protección de la privacidad. La microagregación k-anónima permite publicar un conjunto de datos donde una persona no puede ser distinguida de, al menos, k-1 individuos, mientras se mantiene una dependencia estadística similar entre atributos. En la actualidad, los algoritmos de microagregación son usados comúnmente en este campo gracias a la simplicidad y la calidad que proporcionan. Sin embargo, usados en grandes conjuntos de datos estos métodos resultan caros en términos de tiempo de proceso. Este trabajo aborda la necesidad de ejecutar la k-anonimización de una manera más rápida y eficiente introduciendo a su vez una pérdida mínima por distorsión. Para ello, partimos el conjunto de datos original en dos fracciones que serán procesadas en dos pasos consecutivos permitiendo la posibilidad de empezar incluso antes de recibir todo el conjunto de datos. Intuitivamente el proceso sería indicado para anonimizar encuestas, procesos electorales, y todo tipo de escrutinios, pero el método ha demostrado ser más rápido incluso sin ventaja en el inicio.
dc.description.abstractCadascun de nosaltres està constantment generant dades sobre els nostres interessos, preferències o afiliacions, ja sigui de manera conscient o inconscient. Els avanços en el camp tecnològic han portat a un enorme volum de dades disponibles a internet sobre cada individu. L’ús i publicació de dades sensibles (investigació social, marketing) han generat la necessitat de tècniques d’anonimització, on es busca un compromís entre la utilitat de les dades i la protecció de la privacitat. La microagregació k-anònima permet publicar un conjunt de dades on una persona no pot ser distingida de, com a mínim, k-1 individus mentre es manté una dependència estadística similar entre atributs. En l’actualitat, generalment s’utilitzen algorismes de microagregació en aquest camp a gràcies a la simplicitat i qualitat que proporcionen. No obstant això, utilitzats en grans conjunts de dades aquests mètodes resulten cars en termes de temps de procés. Aquest treball aborda la necessitat d’executar la k-anonimització d’una manera més ràpida i eficient tot presentant una pèrdua mínima per distorsió. Per a això, partim el conjunt de dades original en dues fraccions que seran processades en dues fases consecutives permetent la possibilitat de començar fins i tot abans de la recepció del conjunts de dades sencer. Intuitivament el procés seria indicat per a anonimitzar enquestes, processos electorals, i altres tipus d’escrutinis, però el mètode ha demostrat ser més ràpid fins i tot sense avantatge a l’inici.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació::Telemàtica i xarxes d'ordinadors
dc.subject.lcshAlgorithms
dc.subject.lcshDatabases
dc.subject.lcshElectronic data interchange
dc.subject.lcshElectronic data processing
dc.subject.lcshComputer security
dc.subject.otherk-Anonymity
dc.subject.otherincremental micro¬aggregation
dc.subject.otherstatistical disclosure control
dc.subject.otherlarge-scale datasets
dc.subject.otherPrivacidad
dc.subject.otherMicroagregación
dc.subject.otherGrandes volúmenes de datos
dc.subject.otherk-Anonimidad
dc.titleIncremental k-anonymous microaggregation of large-scale datasets
dc.title.alternativeMicroagregación incremental k-anónima de grandes volúmenes de datos
dc.title.alternativeMicroagregació incremental k-anónima de grans volums de dades
dc.typeMaster thesis (pre-Bologna period)
dc.subject.lemacAlgorismes
dc.subject.lemacBases de dades
dc.subject.lemacIntercanvi electrònic de dades
dc.subject.lemacProcessament electrònic de dades
dc.subject.lemacSeguretat informàtica
dc.identifier.slugETSETB-230.111680
dc.rights.accessOpen Access
dc.date.updated2016-06-24T05:52:18Z
dc.audience.educationlevelEstudis de primer/segon cicle
dc.audience.mediatorEscola Tècnica Superior d'Enginyeria de Telecomunicació de Barcelona


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder