Show simple item record

dc.contributor.authorCompta Creus, Albert
dc.contributor.authorFerrer Llop, Josep
dc.contributor.authorPeña Carrera, Marta
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.identifier.citationCompta Creus, Albert; Ferrer Llop, Josep; Peña Carrera, Marta. "Dimension of the orbit of marked subspaces". Linear algebra and its applications, 2004, núm. 379, p. 239-248.
dc.description.abstractGiven a nilpotent endomorphism, we consider the manifold of invariant subspaces having a fixed Segre characteristic. In [Linear Algebra Appl., 332–334 (2001) 569], the implicit form of a miniversal deformation of an invariant subspace with respect to the usual equivalence relation between subspaces is obtained. Here we obtain the explicit form of this deformation when the invariant subspace is marked, and we use it to calculate the dimension of the orbit and in particular to characterize the stable marked subspaces (those with open orbit).Moreover, we study the rank of the endomorphisms in the quotient space by the subspaces in the miniversal deformation of the giving subspace.
dc.subject.lcshGlobal analysis (Mathematics)
dc.subject.lcshAlgebras, Linear
dc.subject.lcshMultilinear algebra
dc.subject.otherorbit of marked subspaces
dc.titleDimension of the orbit of marked subspaces
dc.subject.lemacÀlgebra lineal
dc.subject.lemacÀlgebra multilineal
dc.subject.lemacMatriu S, Teoria
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::58 Global analysis, analysis on manifolds::58K Theory of singularities and catastrophe theory
dc.subject.amsClassificació AMS::15 Linear and multilinear algebra; matrix theory
dc.rights.accessOpen Access

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder