Show simple item record

dc.contributorGómez Melis, Guadalupe
dc.contributorLangohr, Klaus
dc.contributor.authorBesalú Mayol, Mireia
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa
dc.description.abstractThe main goal of this work it is to present a review of the existing methods to deal with the goodness-of-fit for right-censored data. Goodness-of-fit tests are developed to assess whether a given distribution is suited to a data set. Literature on goodness-of-fit tests for right-censored data is scarce and scattered. This master s degree thesis is divided into three different parts. The first part is devoted to review the bibliography of goodness-of-fit test for parametric models with right-censored data. We classify them according to the type of censoring and the methodology used, and we also propose a unified notation. The second part it focuses on the theoretic explanation of the Generalized Chi Squared test. Finally, the last part of the work presents an implementation in R of the Generalized Chi-Squared test for complete and right-censored data. We also have applied the above methods to some data sets and we have analyzed the results.
dc.publisherUniversitat Politècnica de Catalunya
dc.publisherUniversitat de Barcelona
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Estadística matemàtica
dc.subject.lcshSurvival analysis (Biometry)
dc.titleTesting Goodness-of-Fit of Parametric Survival Models for Right Censored Data
dc.typeMaster thesis
dc.subject.lemacAnàlisi de supervivència (Biometria)
dc.subject.amsClassificació AMS::62 Statistics::62N Survival analysis and censored data
dc.rights.accessOpen Access
dc.audience.mediatorUniversitat Politècnica de Catalunya. Facultat de Matemàtiques i Estadística

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain