Show simple item record

dc.contributorGiró Nieto, Xavier
dc.contributor.authorFontdevila Bosch, Eduard
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.description.abstractThis thesis is framed in the computer vision eld, addressing a challenge related to instance search. Instance search consists in searching for occurrences of a certain visual instance on a large collection of visual content, and generating a ranked list of results sorted according to their relevance to a user query. This thesis builds up on existing work presented at the TRECVID Instance Search Task in 2014, and explores the use of local deep learning features extracted from object proposals. The performance of di erent deep learning architectures (at both global and local scales) is evaluated, and a thorough comparison of them is performed. Secondly, this thesis presents the guidelines to follow in order to ne-tune a convolutional neural network for tasks such as image classi cation, object detection and semantic segmentation. It does so with the nal purpose of ne tuning SDS, a CNN trained for both object detection and semantic segmentation, with the recently released Microsoft COCO dataset.
dc.publisherUniversitat Politècnica de Catalunya
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació::Processament del senyal
dc.subject.lcshComputer vision
dc.subject.lcshRemote sensing
dc.subject.otherDeep learning
dc.subject.otherComputer vision
dc.subject.otherBig data
dc.subject.otherConvolutional neural networks
dc.titleRegion-oriented convolutional networks for object retrieval
dc.typeBachelor thesis
dc.subject.lemacVisió per ordinador
dc.subject.lemacBases de dades
dc.rights.accessOpen Access
dc.audience.mediatorEscola d'Enginyeria de Terrassa

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Generic