Array covariance error measurement in adaptive source estimation

Tipus de documentText en actes de congrés
Data publicació1994
Condicions d'accésAccés obert
Abstract
The small error approximation is used to derive a linear relationship between the source parameters (i.e. power levels and directions of arrival) and a measurement of the covariance error matrix, defined as the difference between a nonparametric consistent estimate of the spectral density matrix and a covariance model from the scenario parameters. The resulting framework allows the design of a Kalman-like algorithm which provides a simultaneous and adaptive estimation of the source parameter, no matter what the source waveform or modulation. Good performance is expected, mainly in the presence of sensors malfunctioning, low signal-to-noise ratio, etc.
CitacióPerez, A., Lagunas, M. Array covariance error measurement in adaptive source estimation. A: IEEE Workshop on Statistical Signal and Array Processing. "IEEE Seventh SP Workshop on Statistical Signal and Array Processing: June 26-29, 1994: proceedings". 1994, p. 90-93.
Versió de l'editorhttp://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=246855&tag=1
Fitxers | Descripció | Mida | Format | Visualitza |
---|---|---|---|---|
Array covarianc ... e parameter estimation.pdf | 314.0Kb | Visualitza/Obre |
Llevat que s'hi indiqui el contrari, els continguts d'aquesta obra estan subjectes a la llicència de Creative Commons:
Reconeixement-NoComercial-SenseObraDerivada 3.0 Espanya