Show simple item record

dc.contributor.authorGasull Embid, Armengol
dc.contributor.authorGuillamon Grabolosa, Antoni
dc.contributor.authorMañosa Fernández, Víctor
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.date.accessioned2007-05-04T16:37:24Z
dc.date.available2007-05-04T16:37:24Z
dc.date.issued1996
dc.identifier.urihttp://hdl.handle.net/2117/883
dc.description.abstractIn this paper, we study systems in the plane having a critical point with pure imaginary eigenvalues, and we search for effective conditions to discern whether this critical point is a focus or a center; in the case of it being a center, we look for additional conditions in order to be isochronous. We wish to stress that the essential differences between the techniques used in this work and the more usual ones are basically two: the elimination of the integration constants when we consider primitives of functions (see also Remark 3.2) and the fact that we maintain the complex notation in the whole study. Thanks to these aspects, we reach with relative ease an expression of the first three Liapunov constants, $v_3$, $v_5$ and $v_7$, and of the first two period ones, $p_2$ and $p_4$, for a general system. As far as we know, this is the first time that a general and compact expression of $v_7$ has been given. Moreover, the use of a computer algebra system is only needed in the computation of $v_7$ and $p_4$. These results are applied to give a classification of centers and isochronous centers for certain families of differential equations.
dc.format.extent20 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/es/
dc.subject.lcshDifferential equations
dc.subject.otherCenter
dc.subject.otherIsochronous center
dc.subject.otherLiapunov constant
dc.subject.otherPeriod constant
dc.titleAn explicit expression of the first Liapunov and period constants with applications
dc.typeArticle
dc.subject.lemacEquacions diferencials ordinàries
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.subject.amsClassificació AMS::34 Ordinary differential equations::34C Qualitative theory
dc.rights.accessOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 2.5 Spain