Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

63.134 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Màster universitari Erasmus Mundus en Recerca en Tecnologies de la Informació i la Comunicació (MERIT) (Pla 2009)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Màster universitari Erasmus Mundus en Recerca en Tecnologies de la Informació i la Comunicació (MERIT) (Pla 2009)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic human detection and tracking for robust video sequence annotation

Thumbnail
View/Open
MasterThesis_RamonLlorca.pdf (20,90Mb) (Restricted access)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/87911

Show full item record
Llorca Queralt, Ramón
Tutor / directorVaras González, DavidMés informacióMés informació; Morros Rubió, Josep RamonMés informacióMés informacióMés informació
Document typeMaster thesis
Date2014-10-30
Rights accessRestricted access - confidentiality agreement (embargoed until 2026-06-13T06:23:33Z)
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Along this thesis, a novel and robust approach for automatic human annotation in long video sequences is addressed. This work defines a fully automatic pipeline that is able to deal with different types of sequences. The proposed system has been both designed and implemented following a divide and conquer approach. First, a shot detector is used to divide the sequences in smaller ones. Then, humans are detected using a face detector based on the Viola & Jones algorithm. Once humans are detected, their faces are tracked using color-based particle filters and Local Binary Patterns (LBP). Several techniques and refinements have been implemented to improve the overall robustness of the system. Moreover, a track-by-detection technique is used to enhance the tracking accuracy. Finally, each human's track is annotated throughout every shot of the sequence. The performance of the global system is assessed in experiments with real sequences and compared against human made annotations. Furthermore, these annotated tracks set the groundwork for a future recognition system, that will complete the task of automatically annotating identities throughout sequences.
SubjectsVideo recording, Human face recognition (Computer science), Vídeo, Reconeixement facial (Informàtica)
URIhttp://hdl.handle.net/2117/87911
Collections
  • Màsters oficials - Màster universitari Erasmus Mundus en Recerca en Tecnologies de la Informació i la Comunicació (MERIT) (Pla 2009) [98]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
MasterThesis_RamonLlorca.pdfBlocked20,90MbPDFRestricted access

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina