dc.contributor.author | Salazar González, Fernando |
dc.contributor.author | Toledo Municio, Miguel Ángel |
dc.contributor.author | Oñate Ibáñez de Navarra, Eugenio |
dc.contributor.author | Suárez Arroyo, Benjamín |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental |
dc.contributor.other | Centre Internacional de Mètodes Numèrics en Enginyeria |
dc.date.accessioned | 2016-06-01T14:49:11Z |
dc.date.available | 2018-08-01T00:30:40Z |
dc.date.issued | 2016-07 |
dc.identifier.citation | Salazar, F., Toledo, M. A., Oñate, E., Suarez, B. Interpretation of dam deformation and leakage with boosted regression trees. "Engineering structures", Juliol 2016, vol. 119, p. 230-251. |
dc.identifier.issn | 0141-0296 |
dc.identifier.uri | http://hdl.handle.net/2117/87614 |
dc.description.abstract | Predictive models are essential in dam safety assessment. They have been traditionally based on simple statistical tools such as the hydrostatic-season-time (HST) model. These tools are well known to have limitations in terms of accuracy and reliability. In the recent years, the examples of application of machine learning and related techniques are becoming more frequent as an alternative to HST. While they proved to feature higher flexibility and prediction accuracy, they are also more difficult to interpret. As a consequence, the vast majority of the research is limited to prediction accuracy estimation. In this work, one of the most popular machine learning techniques (boosted regression trees), was applied to model 8 radial displacements and 4 leakage flows at La Baells Dam. The possibilities of model interpretation were explored: the relative influence of each predictor was computed, and the partial dependence plots were obtained. Both results were analysed to draw conclusions on dam response to environmental variables, and its evolution over time. The results show that this technique can efficiently identify dam performance changes with higher flexibility and reliability than simple regression models. |
dc.format.extent | 22 p. |
dc.language.iso | eng |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Enginyeria civil::Enginyeria hidràulica, marítima i sanitària::Embassaments i preses |
dc.subject.lcsh | Dam safety |
dc.subject.other | Machine learning |
dc.subject.other | Dam safety |
dc.subject.other | Dam monitoring |
dc.subject.other | Boosted regression trees |
dc.title | Interpretation of dam deformation and leakage with boosted regression trees |
dc.type | Article |
dc.subject.lemac | Preses (Enginyeria) -- Mesures de seguretat |
dc.contributor.group | Universitat Politècnica de Catalunya. GMNE - Grup de Mètodes Numèrics en Enginyeria |
dc.contributor.group | Universitat Politècnica de Catalunya. RMEE - Grup de Resistència de Materials i Estructures en l'Enginyeria |
dc.identifier.doi | 10.1016/j.engstruct.2016.04.012 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | http://www.sciencedirect.com/science/article/pii/S0141029616301237 |
dc.rights.access | Open Access |
local.identifier.drac | 18544980 |
dc.description.version | Postprint (author's final draft) |
local.citation.author | Salazar, F.; Toledo, M. A.; Oñate, E.; Suarez, B. |
local.citation.publicationName | Engineering structures |
local.citation.volume | 119 |
local.citation.startingPage | 230 |
local.citation.endingPage | 251 |