Mostra el registre d'ítem simple

dc.contributor.authorSoler Sagarra, Joaquim
dc.contributor.authorLuquot, Linda
dc.contributor.authorMartínez Pérez, Laura
dc.contributor.authorSaaltink, Maarten Willem
dc.contributor.authorGaspari, Francesca de
dc.contributor.authorCarrera Ramírez, Jesús
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2016-05-27T18:02:35Z
dc.date.available2018-06-01T00:30:35Z
dc.date.issued2016-05
dc.identifier.citationSoler, J., Luquot, L., Martinez, L., Saaltink, M., De Gaspari, F., Carrera, J. Simulation of chemical reaction localization using a multi-porosity reactive transport approach. "International journal of greenhouse gas control", Maig 2016, vol. 48, núm. Part 1, p. 59-68.
dc.identifier.issn1750-5836
dc.identifier.urihttp://hdl.handle.net/2117/87472
dc.description.abstractResults of reactive transport laboratory experiments often suggest that pore scale heterogeneity induces localization of reactions (the generation of local micro environments favoring reactions that would not occur in a well-mixed Representative Elementary Volume, REV). Multi-Rate Mass Transfer (MRMT), which has been employed to reproduce hydrodynamic heterogeneity, may also be used to simulate geochemical localization. We extended the Water Mixing Approach (WMA) designed for single porosity media, to simulate chemical reactions caused by the mixing of mobile and immobile zones. The method is termed Multi-Rate Water Mixing (MRWM). The MRWM approach was employed to simulate laboratory experiments of CO2-rich brine transport through carbonate rich samples (Luquot et al., 2016, in this issue). Chemical heterogeneity in space was reproduced by varying the mineral assemblages in immobile regions. This enabled us to reproduce the generally low pH environment while allowing for high pH local zones required for the localized precipitation of kaolinite, which has been observed in reality, but cannot be modeled with conventional reactive transport formulations. The resulting model is very rich, in that it can reproduce a broad range of pore scale processes in a Darcy scale model, and complex, in that the interaction between chemical kinetics and immobile zones physical parameters is non-trivial.
dc.format.extent10 p.
dc.language.isoeng
dc.publisherJohn Gale
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil::Geologia::Hidrologia
dc.subject.lcshHydrodynamics
dc.subject.otherReactive transport
dc.subject.otherMixing
dc.subject.otherMultirate mass transfer
dc.subject.otherHeletz
dc.subject.otherCO2 storage
dc.titleSimulation of chemical reaction localization using a multi-porosity reactive transport approach
dc.typeArticle
dc.subject.lemacHidrodinàmica
dc.contributor.groupUniversitat Politècnica de Catalunya. GHS - Grup d'Hidrologia Subterrània
dc.identifier.doi10.1016/j.ijggc.2016.01.026
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S1750583616300263
dc.rights.accessOpen Access
local.identifier.drac17529291
dc.description.versionPostprint (author's final draft)
local.citation.authorSoler, J.; Luquot, L.; Martinez, L.; Saaltink, M.; De Gaspari, F.; Carrera, J.
local.citation.publicationNameInternational journal of greenhouse gas control
local.citation.volume48
local.citation.numberPart 1
local.citation.startingPage59
local.citation.endingPage68


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple