Show simple item record

dc.contributor.authorJohnson, W.L.
dc.contributor.authorWallis, T.M.
dc.contributor.authorKabos, P.
dc.contributor.authorRocas Cantenys, Eduard
dc.contributor.authorCollado Gómez, Juan Carlos
dc.contributor.authorLiew, L.A.
dc.contributor.authorHa, J.Y.
dc.contributor.authorDavydov, A.V.
dc.contributor.authorPlankis, A.
dc.contributor.authorHeyliger, P.R.
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.identifier.citationJohnson, W., Wallis, T., Kabos, P., Rocas, E., Collado, J., Liew, L., Ha, J., Davydov, A., Plankis, A., Heyliger, P. A thickness-shear MEMS resonator employing electromechanical transduction through a coplanar waveguide. A: IEEE Frequency Control Symposium. "2012 IEEE International Frequency Control Symposium, IFCS 2012, Proceedings". 2012, p. 452-457.
dc.description.abstractThe design, modeling, fabrication, and characterization of a vibrationally trapped thickness-shear MEMS resonator is presented. This device is intended to avoid various limitations of flexural MEMS resonators, including nonlinearity, clamping losses, thermoelastic damping, and high damping in liquid. It includes a silicon bridge and a reference line on an SOI wafer, a coupled Au/Cr coplanar waveguide, Lorentz-force coupling, variations in waveguide thickness for vibrational trapping, and circuitry for nulling the components of the signal that are unrelated to the acoustic resonance. Finite-element vibrational modeling shows the lowest thickness-shear mode with a bridge thickness of 4.9 µm to be dominated by shear displacements, with the magnitude of out-of-plane displacements decreasing with increasing bridge width. Two-dimensional modeling of vibrational trapping, with central regions of the waveguides having 43 nm greater thickness, indicates that amplitudes are reduced by several orders of magnitude at the ends of the bridges for the fundamental ~ 400 MHz thickness-shear resonance. Sweptfrequency network-analyzer measurements of fabricated devices reveal no evidence for an acoustic resonance, despite a calculated prediction of levels of acoustic power absorption that are well above the measured noise level. A possible explanation for this result is stiction of the bridges to the substrate.
dc.format.extent6 p.
dc.subject.lcshMicroelectromechanical systems
dc.subject.otherAcoustic power
dc.subject.otherAcoustic resonance
dc.subject.otherElectromechanical transduction
dc.subject.otherFabricated device
dc.subject.otherHigh damping
dc.subject.otherMEMS resonators
dc.subject.otherNoise levels
dc.subject.otherOrders of magnitude
dc.subject.otherOut-of-plane displacement
dc.subject.otherReference lines
dc.subject.otherShear displacement
dc.subject.otherSOI wafers
dc.subject.otherThermoelastic damping
dc.subject.otherVibrational trapping
dc.subject.otherWaveguide thickness
dc.titleA thickness-shear MEMS resonator employing electromechanical transduction through a coplanar waveguide
dc.typeConference report
dc.subject.lemacSistemes microelectromecànics
dc.contributor.groupUniversitat Politècnica de Catalunya. CSC - Components and Systems for Communications Research Group
dc.description.peerreviewedPeer Reviewed
dc.rights.accessRestricted access - publisher's policy
dc.description.versionPostprint (published version)
upcommons.citation.authorJohnson, W., Wallis, T., Kabos, P., Rocas, E., Collado, J., Liew, L., Ha, J., Davydov, A., Plankis, A., Heyliger, P.
upcommons.citation.contributorIEEE Frequency Control Symposium
upcommons.citation.publicationName2012 IEEE International Frequency Control Symposium, IFCS 2012, Proceedings

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder