Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
66.403 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Facultat de Matemàtiques i Estadística
  • Grau en Matemàtiques (Pla 2009)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Facultat de Matemàtiques i Estadística
  • Grau en Matemàtiques (Pla 2009)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learnig for Robotic Manipulation in cluttered environments

Thumbnail
View/Open
memoria.pdf (2,106Mb)
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2117/87153

Show full item record
Alet Puig, Ferran
Tutor / directorAlberich Carramiñana, MariaMés informacióMés informacióMés informació; Rodríguez, Alberto
CovenanteeMassachusetts Institute of Technology
Document typeBachelor thesis
Date2016-05
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
In this thesis we focus on designing the planner for MIT s entry in the Amazon Picking Challenge, a robotic competition aiming at pushing the frontiers of manipulation until robots can substitute human pickers in warehouses. Given a set of manipulation primitives (such as grasping, suction, scooping, placing or pushing) we designed a system capable of learning a planner from a set of manipulation experiments. After learning, given any configuration of objects, the planner can come up with the optimal sequence of primitives applied to any object on the scene so as to maximize the probability of successfully picking the goal object. In doing this research we have analyzed Reinforcement Learning, Deep Learning and Planning approaches. For each one, we first describe the background theory, characterizing it for our application to robotics. Then we describe a prototype done in the area and the lessons learned from it. Finally, we combine the strengths of all the areas to create the final design of our system.
SubjectsArtificial intelligence, Intel·ligència artificial
DegreeGRAU EN MATEMÀTIQUES (Pla 2009)
URIhttp://hdl.handle.net/2117/87153
Collections
  • Facultat de Matemàtiques i Estadística - Grau en Matemàtiques (Pla 2009) [318]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
memoria.pdf2,106MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina