Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.781 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Reports de recerca
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Reports de recerca
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Discriminative learning within Arabic statistical machine translation

Thumbnail
View/Open
R09-3.ps (509,2Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/86942

Show full item record
España Bonet, Cristina
Giménez, Jesús
Màrquez Villodre, Lluís
Document typeResearch report
Defense date2009-01
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Written Arabic is a especially ambiguous due to the lack of diacritisation of texts, and this makes the translation harder for automatic systems that do not take into account the context of phrases. Here, we use a standard Phrase-Based Statistical Machine Translation architecture to build an Arabic-to-English translation system, but we extend it by incorporating a local discriminative phrase selection model which addresses this semantic ambiguity. Local classifiers are trained using both linguistic information and context to translate a phrase, and this significantly increases the accuracy in phrase selection with respect to the most frequent translation traditionally considered. These classifiers are integrated into the translation system so that the global task gets benefits from the discriminative learning. As a result, we obtain improvements in the full translation of Arabic documents at the lexical, syntactic and semantic levels as measured by an heterogeneous set of automatic metrics.
CitationEspaña-Bonet, C., Giménez, J., Márquez, L. "Discriminative learning within Arabic statistical machine translation". 2009. 
Is part ofLSI-09-3-R
URIhttp://hdl.handle.net/2117/86942
Collections
  • Departament de Ciències de la Computació - Reports de recerca [1.106]
  • GPLN - Grup de Processament del Llenguatge Natural - Reports de recerca [88]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
R09-3.ps509,2KbPostscriptView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina