Show simple item record

dc.contributor.authorOchoa Guerrero, Diego A.
dc.contributor.authorEsteves, Giovanni
dc.contributor.authorJones, Jacob L.
dc.contributor.authorRubio-Marcos, Fernando
dc.contributor.authorFernández Lozano, José Francisco
dc.contributor.authorGarcía García, José Eduardo
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.identifier.citationOchoa, D. A., Esteves, G., Jones, J.L., Rubio-Marcos, F., Fernández, J.F., Garcia, J. E. Extrinsic response enhancement at the polymorphic phase boundary in piezoelectric materials. "Applied physics letters", 04 Abril 2016, vol. 108, núm. 14, p. 142901-1-142901-5.
dc.description.abstractPolymorphic phase boundaries (PPBs) in piezoelectric materials have attracted significant interest in recent years, in particular because of the unique properties that can be found in their vicinity. However, to fully harness their potential as micro-nanoscale functional entities, it is essential to achieve reliable and precise control of their piezoelectric response, which is due to two contributions known as intrinsic and extrinsic. In this work we have used a (K,Na)NbO3-based lead-free piezoceramic as a model system to investigate the evolution of the extrinsic contribution around a PPB. X-ray diffraction measurements are performed over a wide range of temperatures in order to determine the structures and transitions. The relevance of the extrinsic contribution at the PPB region is evaluated by means of nonlinear dielectric response measurements. Though it is widely appreciated that certain intrinsic properties of ferroelectric materials increase as PPBs are approached, our results demonstrate that the extrinsic contribution also maximizes. An enhancement of the extrinsic contribution is therefore also responsible for improving the functional properties at the PPB region. Rayleigh’s law is used to quantitatively analyze the nonlinear response. As a result, an evolution of the domain wall motion dynamics through the PPB region is detected. This work demonstrates that the extrinsic contribution at a PPB may have a dynamic role in lead-free piezoelectric materials, thereby exerting a far greater influence on their functional properties than that considered to date.
dc.subjectÀrees temàtiques de la UPC::Física
dc.subject.lcshPiezoelectric materials
dc.subject.otherpolymorphic phase boundaries
dc.subject.otherpiezoelectric materials
dc.titleExtrinsic response enhancement at the polymorphic phase boundary in piezoelectric materials
dc.subject.lemacMaterials piezoelèctrics
dc.contributor.groupUniversitat Politècnica de Catalunya. CEMAD - Caracterització Elèctrica de Materials i Dispositius
dc.rights.accessOpen Access
dc.description.versionPostprint (author's final draft)
upcommons.citation.authorOchoa, D. A.; Esteves, G.; Jones, J.L.; Rubio-Marcos, F.; Fernández, J.F.; Garcia, J. E.
upcommons.citation.publicationNameApplied physics letters

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain