A multi-cell multi-objective self-optimisation methodology based on genetic algorithms for wireless cellular networks
View/Open
nem1831.pdf (1,527Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/86696
Document typeArticle
Defense date2013-07
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Self-organising networks (SON) are seen as one of the hottest topics in telecommunication network research and development, eagerly awaited by network operators to achieve a reduction in operational expenditures.
However, there are still many challenges and dif¿culties when moving from the SON concept to practical implementation. In this context, this paper ¿rst provides a general formulation of the automated optimisation problem and a detailed description of the main challenges and dif¿culties ahead. Then, a generic multi-cell multi-objective self-optimisation methodology based on genetic algorithms is proposed. The proposed framework is formulated in detail for a joint coverage and overlap optimisation problem in a multi-cell scenario. A case study using real measurements of a Universal Mobile Telecommunications System network deployed in a medium-size European city is presented to illustrate the proposed methodology. In the presented
case study, the pilot power, antenna tilt and antenna azimuth of the different cells are optimised according to certain cell coverage and cell overlap targets. Results reveal that the genetic-based approach is able to provide optimised solutions that ef¿ciently achieve the desired targets accounting for inter-cell coupling effects.
CitationSanchez, J., Sallent, J., Perez, J., Agusti, R. A multi-cell multi-objective self-optimisation methodology based on genetic algorithms for wireless cellular networks. "International journal of network management", Juliol 2013, vol. 23, núm. 4, p. 287-307.
ISSN1055-7148
Publisher versionhttp://onlinelibrary.wiley.com/doi/10.1002/nem.1831/pdf
Files | Description | Size | Format | View |
---|---|---|---|---|
nem1831.pdf | 1,527Mb | Restricted access |