Mostra el registre d'ítem simple

dc.contributor.authorTorre Sangrà, David de la
dc.contributor.authorFantino, Elena
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.identifier.citationDe La Torre, D., Fantino, E. Review of Lambert's problem. A: International Symposium on Space Flight Dynamics. "ISSFD 2015: 25th International Symposium on Space Flight Dynamics, 19-23 October, Munich, Germany". Munich: 2015, p. 1-15.
dc.description.abstractLambert’s problem is the orbital boundary-value problem constrained by two points and elapsed time. It is one of the most extensively studied problems in celestial mechanics and astrodynamics, and, as such, it has always attracted the interest of mathematicians and engineers. Its solution lies at the base of algorithms for, e.g., orbit determination, orbit design (mission planning), space rendezvous and interception, space debris correlation, missile and spacecraft targeting. There is abundance of literature discussing various approaches developed over the years to solve Lambert’s problem. We have collected more than 70 papers and, of course, the issue is treated in most astrodynamics and celestial mechanics textbooks. From our analysis of the documents, we have been able to identify five or six main solution methods, each associated to a number of revisions and variations, and many, so to say, secondary research lines with little or no posterior development. We have ascertained plenty of literature with proposed solutions, in many cases supplemented by performance comparisons with other methods. We have reviewed and organized the existing bibliography on Lambert’s problem and we have performed a quantitative comparison among the existing methods for its solution. The analysis is based on the following issues: choice of the free parameter, number of iterations,generality of the mathematical formulation, limits of applicability (degeneracies, domain of the parameter, special cases and peculiarities), accuracy, and suitability to automatic execution. Eventually we have tested the performance of each code. The solvers that incorporate the best qualities are Bate’s algorithm via universal variables with Newton-Raphson and Izzo’s Householder algorithm. The former is the fastest, the latter exhibits the best ratio between speed, robustness and accuracy.
dc.format.extent15 p.
dc.subjectÀrees temàtiques de la UPC::Física::Astronomia i astrofísica
dc.subject.lcshCelestial mechanics
dc.subject.othertwo-body problem
dc.subject.othertransfer time equation
dc.subject.otherroot finding algorithms
dc.titleReview of Lambert's problem
dc.typeConference lecture
dc.subject.lemacMecànica celest
dc.contributor.groupUniversitat Politècnica de Catalunya. CTE-CRAE - Grup de Recerca en Ciències i Tecnologies de l'Espai
dc.contributor.groupUniversitat Politècnica de Catalunya. L'AIRE - Laboratori Aeronàutic i Industrial de Recerca i Estudis
dc.rights.accessOpen Access
dc.description.versionPostprint (author's final draft)
upcommons.citation.authorDe La Torre, D., Fantino, E.
upcommons.citation.contributorInternational Symposium on Space Flight Dynamics
upcommons.citation.publicationNameISSFD 2015: 25th International Symposium on Space Flight Dynamics, 19-23 October, Munich, Germany

Fitxers d'aquest items


Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització del titular dels drets