Show simple item record

dc.contributor.authorÁlvarez Faura, M. del Carme
dc.contributor.authorFrancès, Guillem
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Llenguatges i Sistemes Informàtics
dc.date.accessioned2016-04-28T07:48:37Z
dc.date.available2016-04-28T07:48:37Z
dc.date.issued2007-09
dc.identifier.citationÁlvarez, C., Francès, G. "Maximum congestion games on networks: How can we compute their equilibria?". 2007.
dc.identifier.urihttp://hdl.handle.net/2117/86307
dc.description.abstractWe study Network Maximum Congestion Games, a class of network games where players choose a path between two given nodes in order to minimize the congestion of the bottleneck (the most congested link) of their path. For single-commodity games, we provide an algorithm which computes a Pure Nash Equilibrium in polynomial time. If all players have the same weight, the obtained equilibrium has optimum social cost. If players are allowed to have different weights, the obtained equilibrium has social cost at most 4/3 times worst than the optimum. For multi-commodity games with a fixed number of commodities and a particular graph topology, we also provide an algorithm which computes a Pure Nash Equilibria in polynomial time. We also study some issues related to the quality of the equilibria in this kind of games.
dc.format.extent19 p.
dc.language.isoeng
dc.relation.ispartofseriesLSI-07-30-R
dc.subjectÀrees temàtiques de la UPC::Informàtica::Informàtica teòrica
dc.subject.otherNetwork congestion games
dc.subject.otherNash equilibria
dc.subject.otherComputational complexity
dc.subject.otherEdge-disjoint paths
dc.titleMaximum congestion games on networks: How can we compute their equilibria?
dc.typeExternal research report
dc.rights.accessOpen Access
local.identifier.drac1891129
dc.description.versionPostprint (published version)
local.citation.authorÁlvarez, C.; Francès, G.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder