Show simple item record

dc.contributor.authorGarcía, David L.
dc.contributor.authorVellido Alcacena, Alfredo
dc.contributor.authorNebot Castells, M. Àngela
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Llenguatges i Sistemes Informàtics
dc.identifier.citationGarcía, D., Vellido, A., Nebot, M. "Predictive models in churn data mining: a review". 2007.
dc.description.abstractThe development of predictive models of customer abandonment plays a central role in any churn management strategy. These models can be developed using either qualitative approaches or can take a data-centred point of view. In the latter case, the use of Data Mining procedures and techniques can provide useful and actionable insights into the processes leading to abandonment. In this report, we provide a brief and structured review of some of the Data Mining approaches that have been put forward in recent academic literature for customer abandonment prediction.
dc.format.extent12 p.
dc.subjectÀrees temàtiques de la UPC::Informàtica::Intel·ligència artificial
dc.subject.otherData mining
dc.subject.otherPredictive models
dc.titlePredictive models in churn data mining: a review
dc.typeExternal research report
dc.contributor.groupUniversitat Politècnica de Catalunya. SOCO - Soft Computing
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
upcommons.citation.authorGarcía, D., Vellido, A., Nebot, M.

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder