Tècniques de feature weighting per casos no supervisats: Implementació a GESCONDA

View/Open
Document typeResearch report
Defense date2006-07
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Feature selection and feature weighting methods in supervised domains have been thoroughly discussed in the literature. On the other hand, very little work has been done for unsupervised domains, probably due to the assumed hypothesis that their performance would necessary be substantially worse than the supervised method performance. One method found in the literature, in addition to the new methods proposed are detailed in this paper. The methods have been tested and compared in a data base coming from a Wastewater Treatment plant, with good results. Also, the integration of the new software into the GESCONDA tool is detailed.
CitationSànchez-Marrè, M., Gómez, S., Teixidò, F., Gibert, Karina. "Tècniques de feature weighting per casos no supervisats: Implementació a GESCONDA". 2006.
Is part ofLSI-06-3-T
Collections
- Departament d'Estadística i Investigació Operativa - Reports de recerca [90]
- KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic - Reports de recerca [96]
- DAMA-UPC - Data Management Group de la Universitat Politècnica de Catalunya - Reports de recerca [2]
- Departament de Ciències de la Computació - Reports de recerca [1.107]