Mostra el registre d'ítem simple

dc.contributor.authorBanks, Robert Franklin
dc.contributor.authorTiana Alsina, Jordi
dc.contributor.authorBaldasano Recio, José María
dc.contributor.authorRocadenbosch Burillo, Francisco
dc.contributor.authorPapayannis, Alexander
dc.contributor.authorSolomos, Stavros
dc.contributor.authorTzanis, Chris G.
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Projectes i de la Construcció
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.date.accessioned2016-04-21T14:04:33Z
dc.date.available2018-07-31T00:30:42Z
dc.date.issued2016-07-01
dc.identifier.citationBanks, R., Tiana, J., Baldasano, J., Rocadenbosch, F., Papayannis, A., Solomos, S., Tzanis, C. Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign. "Atmospheric research", 01 Juliol 2016, vol. 176-177, p. 185-201.
dc.identifier.issn0169-8095
dc.identifier.urihttp://hdl.handle.net/2117/86070
dc.description.abstractAir quality forecast systems need reliable and accurate representations of the planetary boundary layer (PBL) to perform well. An important question is how accurately numerical weather prediction models can reproduce conditions in diverse synoptic flow types. Here, observations from the summer 2014 HygrA-CD (Hygroscopic Aerosols to Cloud Droplets) experimental campaign are used to validate simulations from the Weather Research and Forecasting (WRF) model over the complex, urban terrain of the Greater Athens Area. Three typical atmospheric flow types were identified during the 39-day campaign based on 2-day backward trajectories: Continental, Etesians, and Saharan. It is shown that the numerical model simulations differ dramatically depending on the PBL scheme, atmospheric dynamics, and meteorological parameter (e.g., 2-m air temperature). Eight PBL schemes from WRF version 3.4 are tested with daily simulations on an inner domain at 1-km grid spacing. Near-surface observations of 2-m air temperature and relative humidity and 10-m wind speed are collected from multiple meteorological stations. Estimates of the PBL height come from measurements using a multiwavelength Raman lidar, with an adaptive extended Kalman filter technique. Vertical profiles of atmospheric variables are obtained from radiosonde launches, along with PBL heights calculated using bulk Richardson number. Daytime maximum PBL heights ranged from 2.57 km during Etesian flows, to as low as 0.37 km during Saharan flows. The largest differences between model and observations are found with simulated PBL height during Saharan synoptic flows. During the daytime, campaign-averaged near-surface variables show WRF tended to have a cool, moist bias with higher simulated wind speeds than the observations, especially near the coast. It is determined that non-local PBL schemes give the most agreeable solutions when compared with observations.
dc.format.extent17 p.
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria agroalimentària::Ciències de la terra i de la vida::Climatologia i meteorologia
dc.subject.lcshMeteorology--Research
dc.subject.lcshWeather forecasting
dc.subject.lcshBoundary layer (Meteorology)
dc.subject.lcshGreece
dc.subject.otherAthens
dc.subject.otherGreece
dc.subject.otherBackscatter lidar
dc.subject.otherComplex urban terrain
dc.subject.otherPBL parameterization scheme
dc.subject.otherPlanetary boundary-layer height
dc.subject.otherWeather Research and Forecasting (WRF) model
dc.titleSensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign
dc.typeArticle
dc.subject.lemacMeteorologia
dc.subject.lemacPrevisió del temps
dc.subject.lemacCapa límit (Meteorologia)
dc.subject.lemacGrècia
dc.contributor.groupUniversitat Politècnica de Catalunya. GReCT - Grup de Recerca de Ciències de la Terra
dc.contributor.groupUniversitat Politècnica de Catalunya. RSLAB - Grup de Recerca en Teledetecció
dc.identifier.doi10.1016/j.atmosres.2016.02.024
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
local.identifier.drac17695511
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/316210/EU/Building Capacity for a Centre of Excellence for EO-based monitoring of Natural Disasters/BEYOND
local.citation.authorBanks, R.; Tiana, J.; Baldasano, J.; Rocadenbosch, F.; Papayannis, A.; Solomos, S.; Tzanis, C.
local.citation.publicationNameAtmospheric research
local.citation.volume176-177
local.citation.startingPage185
local.citation.endingPage201


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple