Show simple item record

dc.contributor.authorZhang, Hao
dc.contributor.authorTrias Miquel, Francesc Xavier
dc.contributor.authorOliva Llena, Asensio
dc.contributor.authorYang, Dongmin
dc.contributor.authorTan, Yuanqiang
dc.contributor.authorShu, Shi
dc.contributor.authorSheng, Yong
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Màquines i Motors Tèrmics
dc.date.accessioned2016-04-19T14:57:07Z
dc.date.available2017-03-31T00:30:44Z
dc.date.issued2015-03-01
dc.identifier.citationZhang, H., Trias, F. X., Oliva, A., Yang, D., Tan, Y., Shu, S., Sheng, Y. PIBM: Particulate immersed boundary method for fluid-particle interaction problems. "Powder technology", 01 Març 2015, vol. 272, p. 1-13.
dc.identifier.issn0032-5910
dc.identifier.urihttp://hdl.handle.net/2117/85915
dc.description.abstractIt is well known that the number of particles should be scaled up to enable industrial scale simulation. The calculations are more computationally intensive when the motion of the surrounding fluid is considered. Besides the advances in computer hardware and numerical algorithms, the coupling scheme also plays an important role on the computational efficiency. In this study, a particulate immersed boundary method (PIBM) for simulating the fluid-particle multiphase flow was presented and assessed in both two- and three-dimensional applications. The idea behind PIBM derives from the conventional momentum exchange-based Immersed Boundary Method (IBM) by treating each Lagrangian point as a solid particle. This treatment enables Lattice Boltzmann Method (LBM) to be coupled with fine particles residing within a particular grid cell. Compared with the conventional IBM, dozens of times speedup in two-dimensional simulation and hundreds of times in three-dimensional simulation can be expected under the same particle and mesh number. Numerical simulations of particle sedimentation in Newtonian flows were canducted based on a combined LBM-PIBM-Discrete Element Method (DEM) scheme, showing that the PIBM can capture the feature of particulate flows in fluid and is indeed a promising scheme for the solution of the fluid-particle interaction problems.
dc.format.extent13 p.
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria mecànica::Mecànica de fluids
dc.subject.lcshLattice Boltzmann methods
dc.subject.lcshFluidization
dc.subject.lcshComputational fluid dynamics
dc.subject.lcshDiscrete element method
dc.subject.otherLBM
dc.subject.otherParticulate-IBM
dc.subject.otherDEM
dc.subject.otherFluid-particle interaction
dc.subject.otherLattice-Boltzmann method
dc.subject.otherIncompressible viscous flows
dc.subject.otherSimulation
dc.subject.otherFluidization
dc.subject.otherVelocity
dc.subject.otherSystems
dc.subject.otherDEM
dc.titlePIBM: Particulate immersed boundary method for fluid-particle interaction problems
dc.typeArticle
dc.subject.lemacFluïdització
dc.subject.lemacMètodes reticulars de Boltzmann
dc.subject.lemacDinàmica de fluids computacional
dc.contributor.groupUniversitat Politècnica de Catalunya. CTTC - Centre Tecnològic de la Transferència de Calor
dc.identifier.doi10.1016/j.powtec.2014.11.025
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0032591014009358
dc.rights.accessOpen Access
local.identifier.drac15536635
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/MICINN/6PN/ENE2010-17801
local.citation.authorZhang, H.; Trias, F. X.; Oliva, A.; Yang, D.; Tan, Y.; Shu, S.; Sheng, Y.
local.citation.publicationNamePowder technology
local.citation.volume272
local.citation.startingPage1
local.citation.endingPage13


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain