Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
61.603 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bounded solutions of some nonlinear elliptic equations in cylindrical domains

Thumbnail
View/Open
9701sola.pdf (294,7Kb)
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2117/858

Show full item record
Calsina Ballesta, Ángel
Solà-Morales Rubió, Joan deMés informacióMés informació
València Guitart, MartaMés informacióMés informacióMés informació
Document typeArticle
Defense date1997
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 2.5 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 2.5 Spain
Abstract
The existence of a (unique) solution of the second order semilinear elliptic equation $$ \sum^{n}_{i,j=0}a_{ij}(x)u_{x_{i}x_{j}}+f(\nabla u,u,x)=0 $$ with $x=(x_{0},x_{1},\dots, x_{n})\in (s_{0},\infty )\times \Omega '$, for a bounded domain $\Omega '$, together with the additional conditions $$ \begin{array}{l} u(x)=0\quad \mbox{for } (x_{1},x_{2},\dots, x_{n})\in\partial \Omega '\\ \\ u(x)=\varphi (x_{1},x_{2},\dots, x_{n})\quad \mbox{for } x_{0}=s_{0}\\ \\ \vert u(x)\vert\quad\mbox{globally bounded} \end{array} $$ is shown to be a well posed problem under some sign and growth restrictions on $f$ and its partial derivatives. It can be seen as an initial value problem, with initial value $\varphi $, in the space ${\cal C}^{0}_{0}(\overline {\Omega '})$ and satisfying the strong order-preserving property. In the case that $a_{ij}$ and $f$ do not depend on $x_{0}$ or are periodic in $x_{0}$ it is shown that the corresponding dynamical system has a compact global attractor. Also, conditions on $f$ are given under which all the solutions tend to zero as $x_{0}$ tends to infinity. Proofs are strongly based on maximum and comparison techniques.
URIhttp://hdl.handle.net/2117/858
Collections
  • EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions - Articles de revista [415]
  • Departament de Matemàtiques - Articles de revista [3.099]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
9701sola.pdf294,7KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina