Fully-Coupled Electromechanical Simulations of the LV Dog Anatomy Using HPC: Model Testing and Verification

View/Open
Cita com:
hdl:2117/85690
Document typePart of book or chapter of book
Defense date2015-01-01
PublisherSpringer
Rights accessOpen Access
European Commission's projectVP2HF - Computer model derived indices for optimal patient-specific treatment selection and planning in Heart Failure (EC-FP7-611823)
Abstract
Verification of electro-mechanic models of the heart require a good amount of reliable, high resolution, thorough in-vivo measurements. The detail of the mathematical models used to create simulations of the heart beat vary greatly. Generally, the objective of the simulation determines the modeling approach. However, it is important to exactly quantify the amount of error between the various approaches that can be used to simulate a heart beat by comparing them to ground truth data. The more detailed the model is, the more computing power it requires, we therefore employ a high-performance computing solver throughout this study. We aim to compare models to data measured experimentally to identify the effect of using a mathematical model of fibre orientation versus the measured fibre orientations using DT-MRI. We also use simultaneous endocardial stimuli vs an instantaneous myocardial stimulation to trigger the mechanic contraction. Our results show that synchronisation of the electrical and mechanical events in the heart beat are necessary to create a physiological timing of hemodynamic events. Synchronous activation of all of the myocardium provides an unrealistic timing of hemodynamic events in the cardiac cycle. Results also show the need of establishing a protocol to quantify the zero-pressure configuration of the left ventricular geometry to initiate the simulation protocol; however, the predicted zero-pressure configuration of the same geometry was different, depending on the origin of the fibre field employed.
CitationAguado-Sierra, Jazmin [et al.]. Fully-Coupled Electromechanical Simulations of the LV Dog Anatomy Using HPC: Model Testing and Verification. A: "Statistical Atlases and Computational Models of the Heart - Imaging and Modelling Challenges". Springer, 2015, p. 114-122.
Is part ofLecture Notes in Computer Science, 8896
ISBN978-3-319-14677-5
Publisher versionhttp://link.springer.com/chapter/10.1007%2F978-3-319-14678-2_12
Files | Description | Size | Format | View |
---|---|---|---|---|
Fully-coupled.pdf | 1000,Kb | View/Open |
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder