Ramsey numbers for empty convex polygons
View/Open
ramseyEmptyTriangles_v30_12_2015.pdf (221,1Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Document typeConference report
Defense date2015
PublisherUniversity of Ljubljana
Rights accessRestricted access - publisher's policy
Abstract
We study a geometric Ramsey type problem where the vertices of the complete graph Kn are placed on a set S of n points in general position in the plane, and edges are drawn as straight-line segments. We define the empty convex polygon Ramsey number REC (k, k) as the smallest number n such that for every set S of n points and for every two-coloring of the edges of Kn drawn on S, at least one color class contains an empty convex k-gon. A polygon is empty if it contains no points from S in its interior. We prove 17 ≤ REC (3, 3) ≤ 463 and 57 ≤ REC (4, 4). Further, there are three-colorings of the edges of Kn (drawn on a set S) without empty monochromatic triangles. A related Ramsey number for islands in point sets is also studied.
CitationBautista-Santiago, C., Cano, J., Fabila-Monroy, R., Hidalgo-Toscano, C., Huemer, C., Leaños, J., Sakai, T., Urrutia, J. Ramsey numbers for empty convex polygons. A: European Workshop on Computational Geometry. "European Workshop on Computational Geometry EuroCG 2015". University of Ljubljana, 2015, p. 169-171.
Publisher versionhttp://eurocg15.fri.uni-lj.si/pub/eurocg15-book-of-abstracts.pdf
Files | Description | Size | Format | View |
---|---|---|---|---|
ramseyEmptyTriangles_v30_12_2015.pdf![]() | 221,1Kb | Restricted access |
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain