Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.161 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Instituts de recerca
  • IRI - Institut de Robòtica i Informàtica Industrial, CSIC-UPC
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Instituts de recerca
  • IRI - Institut de Robòtica i Informàtica Industrial, CSIC-UPC
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Matchability prediction for full-search template matching algorithms

Thumbnail
View/Open
1696-Matchability-Prediction-for-Full-Search-Template-Matching-Algorithms.pdf (14,43Mb)
 
10.1109/3DV.2015.47
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/85330

Show full item record
Peñate Sánchez, Adrián
Porzi, Lorenzo
Moreno-Noguer, FrancescMés informació
Document typeConference report
Defense date2015
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
ProjectAEROARMS - AErial RObotic system integrating multiple ARMS and advanced manipulation capabilities for inspection and maintenance (EC-H2020-644271)
Abstract
While recent approaches have shown that it is possible to do template matching by exhaustively scanning the parameter space, the resulting algorithms are still quite demanding. In this paper we alleviate the computational load of these algorithms by proposing an efficient approach for predicting the match ability of a template, before it is actually performed. This avoids large amounts of unnecessary computations. We learn the match ability of templates by using dense convolutional neural network descriptors that do not require ad-hoc criteria to characterize a template. By using deep learning descriptions of patches we are able to predict match ability over the whole image quite reliably. We will also show how no specific training data is required to solve problems like panorama stitching in which you usually require data from the scene in question. Due to the highly parallelizable nature of this tasks we offer an efficient technique with a negligible computational cost at test time.
CitationPeñate, A., Porzi, L., Moreno-Noguer, F. Matchability prediction for full-search template matching algorithms. A: International Conference on 3D Vision. "3D Vision (3DV), 2015 International Conference on". Lyon: Institute of Electrical and Electronics Engineers (IEEE), 2015, p. 353-361. 
URIhttp://hdl.handle.net/2117/85330
DOI10.1109/3DV.2015.47
Publisher versionhttp://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7335503
Collections
  • IRI - Institut de Robòtica i Informàtica Industrial, CSIC-UPC - Ponències/Comunicacions de congressos [609]
  • VIS - Visió Artificial i Sistemes Intel·ligents - Ponències/Comunicacions de congressos [300]
  • ROBiri - Grup de Percepció i Manipulació Robotitzada de l'IRI - Ponències/Comunicacions de congressos [283]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
1696-Matchabili ... te-Matching-Algorithms.pdf14,43MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina