Show simple item record

dc.contributor.authorArroyo Balaguer, Marino
dc.contributor.authorBelytschko, T.
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III
dc.date.accessioned2010-08-02T08:06:12Z
dc.date.available2010-08-02T08:06:12Z
dc.date.created2004-01
dc.date.issued2004-01
dc.identifier.citationArroyo, M.; Belytschko, T. Finite element methods for the non-linear mechanics of crystalline sheets and nanotubes. "International journal for numerical methods in engineering", Gener 2004, vol. 59, núm. 3, The definitive version is available at http://www3.interscience.wiley.com/journal/106569279/abstract, p. 419-456.
dc.identifier.issn0029-5981
dc.identifier.urihttp://hdl.handle.net/2117/8526
dc.description.abstractThe formulation and finite element implementation of a finite deformation continuum theory for the mechanics of crystalline sheets is described. This theory generalizes standard crystal elasticity to curved monolayer lattices by means of the exponential Cauchy-Born rule. The constitutive model for a two-dimensional continuum deforming in three dimensions (a surface) is written explicitly in terms of the underlying atomistic model. The resulting hyper-elastic potential depends on the stretch and the curvature of the surface, as well as on internal elastic variables describing the rearrangements of the crystal within the unit cell. Coarse grained calculations of carbon nanotubes (CNTs) are performed by discretizing this continuum mechanics theory by finite elements. A smooth discrete representation of the surface is required, and subdivision finite elements, proposed for thin-shell analysis, are used. A detailed set of numerical experiments, in which the continuum/finite element solutions are compared to the corresponding full atomistic calculations of CNTs, involving very large deformations and geometric instabilities, demonstrates the accuracy of the proposed approach. Simulations for large multi-million systems illustrate the computational savings which can be achieved.
dc.format.extent38 p.
dc.language.isoeng
dc.publisherWiley and Sons
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
dc.subjectÀrees temàtiques de la UPC::Física::Física de l'estat sòlid::Propietats mecàniques
dc.subject.lcshNanotubes, Carbon
dc.subject.lcshFinite element method
dc.subject.othercarbon nanotubes
dc.subject.othercontinuum surface model
dc.subject.otherhyperelasticity
dc.subject.otherfinite elements
dc.titleFinite element methods for the non-linear mechanics of crystalline sheets and nanotubes
dc.typeArticle
dc.subject.lemacElements finits, Mètode dels
dc.subject.lemacNanotubs de carboni
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.identifier.doi10.1002/nme.944
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
drac.iddocument2631001
dc.description.versionPostprint (author’s final draft)
upcommons.citation.authorArroyo, M.; Belytschko, T.
upcommons.citation.otherThe definitive version is available at http://www3.interscience.wiley.com/journal/106569279/abstract
upcommons.citation.publishedtrue
upcommons.citation.publicationNameInternational journal for numerical methods in engineering
upcommons.citation.volume59
upcommons.citation.number3
upcommons.citation.startingPage419
upcommons.citation.endingPage456


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder