Show simple item record

dc.contributor.authorDelshams Valdés, Amadeu
dc.contributor.authorMiranda Galcerán, Eva
dc.contributor.authorKiesenhofer, Anna
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2016-04-05T09:58:51Z
dc.date.available2016-04-05T09:58:51Z
dc.date.issued2016-12
dc.identifier.citationDelshams, A., Miranda, E., Kiesenhofer, A. "Examples of integrable and non-integrable systems on singular symplectic manifolds". 2016.
dc.identifier.urihttp://hdl.handle.net/2117/85177
dc.description.abstractWe present a collection of examples borrowed from celes- tial mechanics and projective dynamics. In these examples symplectic structures with singularities arise naturally from regularization trans- formations, Appell's transformation or classical changes like McGehee coordinates, which end up blowing up the symplectic structure or lower- ing its rank at certain points. The resulting geometrical structures that model these examples are no longer symplectic but symplectic with sin- gularities which are mainly of two types: b m -symplectic and m -folded symplectic structures. These examples comprise the three body prob- lem as non-integrable exponent and some integrable reincarnations such as the two xed-center problem. Given that the geometrical and dy- namical properties of b m -symplectic manifolds and folded symplectic manifolds are well-understood [GMP, GMP2, GMPS, KMS, Ma, CGP, GL, GLPR, MO, S, GMW], we envisage that this new point of view in this collection of examples can shed some light on classical long-standing problems concerning the study of dynamical properties of these systems seen from the Poisson viewpoint.
dc.format.extent14 p.
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.lcshSymplectic manifolds
dc.titleExamples of integrable and non-integrable systems on singular symplectic manifolds
dc.typeExternal research report
dc.subject.lemacTopologia algebraica
dc.contributor.groupUniversitat Politècnica de Catalunya. SD - Sistemes Dinàmics de la UPC
dc.contributor.groupUniversitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
dc.relation.publisherversionhttp://arxiv.org/abs/1512.08293
dc.rights.accessOpen Access
drac.iddocument17377027
dc.description.versionPreprint
upcommons.citation.authorDelshams, A., Miranda, E., Kiesenhofer, A.
upcommons.citation.publishedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain