Show simple item record

dc.contributor.authorPellicer Sabadí, Marta
dc.contributor.authorSolà-Morales Rubió, Joan de
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.description.abstractIn this paper we consider a linear wave equation with strong damping and dynamical boundary conditions as an alternative model for the classical spring-mass-damper ODE. Our purpose is to compare analytically these two approaches to the same physical system. We take a functional analysis point of view based on semigroup theory, spectral perturbation analysis and dominant eigenvalues.
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.subject.lcshPartial differential equations
dc.subject.lcshDynamical systems
dc.subject.lcshStructures and materials
dc.subject.otherstrongly damped wave equation
dc.subject.otherdynamical boundary conditions
dc.subject.otherasymptotic behavior
dc.subject.otherdominant eigenvalues
dc.titleAnalysis of a viscoelastic spring-mass model
dc.subject.lemacEquacions en derivades parcials
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.subject.amsClassificació AMS::35 Partial differential equations::35L Partial differential equations of hyperbolic type
dc.subject.amsClassificació AMS::35 Partial differential equations::35B Qualitative properties of solutions
dc.subject.amsClassificació AMS::74 Mechanics of deformable solids::74D Materials of strain-rate type and history type, other materials with memory
dc.subject.amsClassificació AMS::74 Mechanics of deformable solids::74H Dynamical problems
dc.subject.amsClassificació AMS::74 Mechanics of deformable solids::74K Thin bodies, structures
dc.rights.accessOpen Access

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 2.5 Spain