Finite element analysis of bifurcation in nonlocal strain softening solids

View/Open
Cita com:
hdl:2117/8501
Document typeArticle
Defense date1991-09
Rights accessOpen Access
Abstract
Progressive damage in brittle heterogeneous materials produces at the macroscopic level strain softening from which theoretical difficulties arise (e.g. ill-posedness and multiple bifurcation points). This characteristics behavior favours spurious strain localization in numerical analyses and calls for the implementation of localization limiters, for instance nonlocal damage constitutive relations. The issue of possible (stable or unstable) equilibrium paths, multiple localization zones, and of the detection of bifurcation points has, however, never been addressed in the context of nonlocal constitutive laws. We extend here the eigenmode analysis and perturbation method proposed by De Borst to the study of the bifurcation and post-bifurcation response of discrete nonlocal strain softening solids. Numerical applications on beams show that bifurcation and instability may occur in the post-peak regime. As opposed to the case of local constitutive relations, the number of possible solutions at a bifurcation point is restricted due to the constraint introduced by the localization limiter and these solutions are shown to be mesh independent.
CitationPijaudier, G.; Huerta, A. Finite element analysis of bifurcation in nonlocal strain softening solids. "Computer methods in applied mechanics and engineering", Setembre 1991, vol. 90, núm. 1-3, p. 905-919.
ISSN0045-7825
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
1991-CMAME-PH_blanc.pdf | 6,589Mb | View/Open |
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder