Mostra el registre d'ítem simple

dc.contributor.authorVigueras, Guillermo
dc.contributor.authorSket, Federico
dc.contributor.authorSamaniego, Cristobal
dc.contributor.authorWu, Ling
dc.contributor.authorNoels, Ludovic
dc.contributor.authorTjahjanto, Denny
dc.contributor.authorCasoni Rero, Eva
dc.contributor.authorHouzeaux, Guillaume
dc.contributor.authorMakradi, Ahmed
dc.contributor.authorMolina-Aldareguia, Jon M.
dc.contributor.authorVázquez, Mariano
dc.contributor.authorJérusalem, Antoine
dc.contributor.otherBarcelona Supercomputing Center
dc.date.accessioned2016-03-23T11:23:31Z
dc.date.available2017-07-01T00:30:41Z
dc.date.issued2015-07
dc.identifier.citationVigueras, Guillermo [et al.]. An XFEM/CZM implementation for massively parallel simulations of composites fracture. "Composite Structures", Juliol 2015, vol. 125, p. 542-557.
dc.identifier.issn0263-8223
dc.identifier.urihttp://hdl.handle.net/2117/84770
dc.description.abstractBecause of their widely generalized use in many industries, composites are the subject of many research campaigns. More particularly, the development of both accurate and flexible numerical models able to capture their intrinsically multiscale modes of failure is still a challenge. The standard finite element method typically requires intensive remeshing to adequately capture the geometry of the cracks and high accuracy is thus often sacrificed in favor of scalability, and vice versa. In an effort to preserve both properties, we present here an extended finite element method (XFEM) for large scale composite fracture simulations. In this formulation, the standard FEM formulation is partially enriched by use of shifted Heaviside functions with special attention paid to the scalability of the scheme. This enrichment technique offers several benefits since the interpolation property of the standard shape function still holds at the nodes. Those benefits include (i) no extra boundary condition for the enrichment degree of freedom, and (ii) no need for transition/blending regions; both of which contribute to maintaining the scalability of the code. Two different cohesive zone models (CZM) are then adopted to capture the physics of the crack propagation mechanisms. At the intralaminar level, an extrinsic CZM embedded in the XFEM formulation is used. At the interlaminar level, an intrinsic CZM is adopted for predicting the failure. The overall framework is implemented in ALYA, a mechanics code specifically developed for large scale, massively parallel simulations of coupled multi-physics problems. The implementation of both intrinsic and extrinsic CZM models within the code is such that it conserves the extremely efficient scalability of ALYA while providing accurate physical simulations of computationally expensive phenomena. The strong scalability provided by the proposed implementation is demonstrated. The model is ultimately validated against a full experimental campaign of loading tests and X-ray tomography analyzes.
dc.description.sponsorshipA.J., A.M., D.T., L.N. and L.W. acknowledge funding through the SIMUCOMP ERA-NET MATERA + project financed by the Fonds National de la Recherche (FNR) of Luxembourg, the Consejería de Educación y Empleo of the Comunidad de Madrid, the Walloon region (agreement no 1017232, CT-EUC 2010–10-12), and by the European Unions Seventh Framework Programme (FP7/2007–2013).
dc.format.extent16 p.
dc.language.isoeng
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivs 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Enginyeria electrònica
dc.subject.lcshLarge scale systems--Data processing
dc.subject.lcshBiological systems--Computer simulation
dc.subject.otherComposites
dc.subject.otherXFEM
dc.subject.otherCohesive elements
dc.subject.otherFailure
dc.subject.otherLarge scale parallel simulations
dc.titleAn XFEM/CZM implementation for massively parallel simulations of composites fracture
dc.typeArticle
dc.subject.lemacSimulació, Mètodes de
dc.identifier.doi10.1016/j.compstruct.2015.01.053
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0263822315001063
dc.rights.accessOpen Access
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/235303/EU/ERA-NET Plus on Materials Research/MATERA+
local.citation.publicationNameComposite Structures
local.citation.volume125
local.citation.startingPage542
local.citation.endingPage557


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple