Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.728 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • ANiComp - Anàlisi numèrica i computació científica
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • ANiComp - Anàlisi numèrica i computació científica
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Approximation of the two-fluid flow problem for viscoelastic fluids using the level set method and pressure enriched finite element shape functions

Thumbnail
View/Open
Main article (2,281Mb)
Share:
 
 
10.1016/j.jnnfm.2015.09.004
 
  View Usage Statistics
Cita com:
hdl:2117/84732

Show full item record
Castillo, E.
Baiges Aznar, JoanMés informacióMés informacióMés informació
Codina, RamonMés informacióMés informacióMés informació
Document typeArticle
Defense date2015-11-01
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
The numerical simulation of complex flows has been a subject of intense research in the last years with important industrial applications in many fields. In this paper we present a finite element method to solve the two immiscible fluid flow problems using the level set method. When the interface between both fluids cuts an element, the discontinuity in the material properties leads to discontinuities in the gradients of the unknowns which cannot be captured using a standard finite element interpolation. The method presented in this work features a local enrichment for the pressure unknowns which allows one to capture pressure gradient discontinuities in fluids presenting different density values. The method is tested on two problems: the first example consists of a sloshing case that involves the interaction of a Giesekus and a Newtonian fluid. This example shows that the enriched pressure functions permit the exact resolution of the hydrostatic rest state. The second example is the classical jet buckling problem used to validate our method. To permit the use of equal interpolation between the variables, we use a variational multiscale formulation proposed recently by Castillo and Codina (2014) [21], that has shown very good stability properties, permitting also the resolution of the jet buckling flow problem in the the range of Weissenberg number 0 < We < 100, using the Oldroyd-B model without any sign of numerical instability. Additional features of the work are the inclusion of a discontinuity capturing technique for the constitutive equation and some comparisons between a monolithic resolution and a fractional step approach to solve the viscoelastic fluid flow problem from the point of view of computational requirements. (C) 2015 Elsevier B.V. All rights reserved.
CitationCastillo, E., Baiges, J., Codina, R. Approximation of the two-fluid flow problem for viscoelastic fluids using the level set method and pressure enriched finite element shape functions. "Journal of non-newtonian fluid mechanics", 01 Novembre 2015, vol. 225, p. 37-53. 
URIhttp://hdl.handle.net/2117/84732
DOI10.1016/j.jnnfm.2015.09.004
ISSN0377-0257
Collections
  • ANiComp - Anàlisi numèrica i computació científica - Articles de revista [101]
  • Departament d'Enginyeria Civil i Ambiental - Articles de revista [2.682]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Paper4.pdfMain article2,281MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina